FU Huansen, WU Lei, XU Sheng. Multi-inductor Parameters Identification and Power Decoupling Control in Induction Heating Power Supply[J]. INFORMATION AND CONTROL, 2016, 45(4): 426-431. DOI: 10.13976/j.cnki.xk.2016.0426
Citation: FU Huansen, WU Lei, XU Sheng. Multi-inductor Parameters Identification and Power Decoupling Control in Induction Heating Power Supply[J]. INFORMATION AND CONTROL, 2016, 45(4): 426-431. DOI: 10.13976/j.cnki.xk.2016.0426

Multi-inductor Parameters Identification and Power Decoupling Control in Induction Heating Power Supply

More Information
  • Received Date: June 02, 2015
  • Revised Date: December 06, 2015
  • Available Online: December 07, 2022
  • Published Date: August 19, 2016
  • To solve the problems of gradient heating and power control in irregularly shaped metals, we design a three-sensor induction heating power process, which has three segments and joint-induction coil heating. We establish a mathematical model and identification method based on key parameters, such as frequency, power, and heating time in aluminum. We also studied the coupling problem by analyzing the heating equivalent circuit for a three-sensor power supply, which obtains the same phase of a three-section multi-sensor output current as the key to power decoupling. Using this theory, we developed a simulation model and prototype, and the simulation results show that using the recursive least squares parameter estimation algorithm will result in a good identification model. This system reaches the allowable error limit when the frequency and heating power have reached 300 and 1 000 recurrence times, respectively. Prototype experimental results show that this method effectively eliminates power coupling between segments of the induction coil, and that accurate gradient heating and power control of irregularly shaped metals can be achieved.
  • [1]
    刘晓辉, 张振世. 一种有温度梯度的感应加热设备[J]. 工业加热, 2010(5): 51-52.

    Liu X H, Zhang Z S. An induction heating equipment of temperature gradient aluminum alloy tube[J]. Industrial Heating, 2010(5): 51-52.
    [2]
    赵飞, 耿程飞, 张永亮. 基于LLC的梯度加热电源研究[J]. 电源技术, 2013, 37(11): 2044-2046.

    Zhao F, Geng C F, Zhang Y L. Study on gradient heating power based on LLC[J]. Chinese Journal of Power Sources, 2013, 37(11): 2044-2046.
    [3]
    吴延华, 娄丽丽, 索红亮. 基于模糊神经网络的中频感应加热电源的研究[J]. 机械制造与自动化, 2011, 40(3): 110-112.

    Wu Y H, Lou L L, Suo H L. Fuzzy neural network based on medium frequency induction heating power supply[J]. Machine Building & Automation, 2011, 40(3): 110-112.
    [4]
    惠晶, 肖进. 基于模糊调功的感应加热电源研究[J]. 金属热处理, 2008, 33(10): 84-87.

    Hui J, Xiao J. Induction heating power supply based on fuzzy power modulation[J]. Heat Treatment of Metals, 2008, 33(10): 84-87.
    [5]
    彭咏龙, 李荣荣, 李亚斌, 等. 基于HPDM的感应加热电源功率调节技术[J]. 电气传动, 2013(1): 171-174.

    Peng Y L, Li R R, Li Ya B, et al. Power regulation technology of induction heating power supply based on HPDM[J]. Electric Drive, 2013(1): 171-174.
    [6]
    Forest F, Labouré E, Costa F, et al. Principle of a multi-load/single converter system for low power induction heating[J]. IEEE Transactions on Power Electronics, 2000, 15(2): 223-230.
    [7]
    Umasankar P, Kumar S S. Neuro-fuzzy logic control of single phase matrix converter fed induction heating system[J]. Research Journal of Applied Sciences Engineering & Technology, 2015, 9(6): 419-427.
    [8]
    胡程平, 陈辉明. 多感应器感应加热电源功率解耦控制[J]. 电力电子技术, 2012, 46(4): 10-11.

    Hu C P, Chen H M. Multi-inductor power decoupled control in induction heating power supply[J]. Power Electronics, 2012, 46(4): 10-11.
    [9]
    Booma N, Reddy S R, Pradeep V. Simulation of PWM controlled double half bridge inverter for partly coupled induction cooking system[M]//Power Electronics and Renewable Energy Systems. Berlin, Germany: Springer, 2015: 237-244.
    [10]
    李韵豪. 锻压工业中的感应加热--第五讲铝合金的感应加热及感应器的设计与参数计算[J]. 机械工人: 热加工, 2007(6): 85-90.

    Li Y L. Induction heating forging industry-aluminum induction heating and sensor design and parameter calculation[J]. Machinist Metal Forming, 2007(6): 85-90.
    [11]
    庞强, 夏琼, 邹涛, 等. 一种基于模型参考自适应辨识的半自动模型预测控制方法[J]. 信息与控制, 2014, 43(6): 681-689.

    Pang Q, Xia Q, Zhou T, et al. The semi-automatic model predictive control method based on model reference adaptive identification algorithm model reference adaptive identification algorithm[J]. Information and Control, 2014, 43(6): 681-689.
    [12]
    丁锋. 系统辨识新论[M]. 1版. 北京: 科学出版社, 2013: 45-65.

    Ding F. System identification[M]. 1st ed. Beijing: Science Press, 2013: 45-65.
    [13]
    苏奇全, 贾宏光, 朱明超, 等. 基于递推闭环子空间辨识的自适应预测控制方法[J]. 信息与控制, 2015, 44(2): 252-256.

    Su Q Q, Jia H G, Zhu M C, et al. An adaptive predictive control method based on recursive closed-loop subspace identification[J]. Information and Control, 2015, 44(2): 252-256.
    [14]
    王佳, 王宏伟, 夏浩, 等. 基于子空间的多率控制系统闭环辨识[J]. 信息与控制, 2014, 43(5): 583-587.

    Wang J, Wang H W, Xia H, et al. Subspace-based closed-loop identification of multirate control system[J]. Information and Control, 2014, 43(5): 583-587.

Catalog

    Article views (576) PDF downloads (266) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return