Citation: | GUO Jinyu, WANG Xin, LI Yuan. Fault Detection Based on Ensemble Kernel Locality Preserving Projections[J]. INFORMATION AND CONTROL, 2018, 47(2): 191-199. DOI: 10.13976/j.cnki.xk.2017.0191 |
Given the nonlinearity of the chemical production process, to solve the selection of kernel parameter of kernel locality preserving projection algorithm and identify nuclear parameters that are suitable for multiple faults, we propose a new ensemble kernel locality preserving projection (KLPP) algorithm.First, we select a series of kernel functions with different parameters to project nonlinear data into a high-dimensional space for the extraction of nonlinear information of the data.The projection matrix A is obtained.A series of sub-KLPP models is established.Then, the kernel matrix of the data to be detected is calculated and then projected onto the matrix A.The detection results of each sub-model are obtained by statistics.Then, the detection results are transformed into the form of fault probability by using Bayesian decision.Finally, we use the ensemble learning method to combine the detection results.The final detection result is obtained by comparing the transformed result with the control limit.The method is applied to the Tennessee Eastman process and is proven to effectively detect nonlinear faults.
[1] |
周东华, 李钢, 李元.数据驱动的工业过程故障检测与诊断技术[M].北京:科学出版社, 2011:1-76.
Zhou D H, Li G, Li Y.Fault detection and diagnosis technology of industrial process based on data driven[M].Beijing:Science Press, 2011:1-76.
|
[2] |
郭金玉, 齐蕾蕾, 李元.基于DMOLPP的间歇过程在线故障检测[J].仪器仪表学报, 2015, 36(1):28-36. http://www.cnki.com.cn/Article/CJFDTotal-YQXB201501019.htm
Guo J Y, Qi L L, Li Y.On-line fault detection of batch process based on DMOLPP[J].Chinese Journal of Scientific Instrument, 2015, 36(1):28-36. http://www.cnki.com.cn/Article/CJFDTotal-YQXB201501019.htm
|
[3] |
谢彦红, 孙呈敖, 李元.基于滑动窗口SVDD的间歇过程故障监测[J].信息与控制, 2015, 44(5):531-537. http://ic.sia.cn/CN/abstract/abstract12319.shtml
Xie Y H, Sun C A, Li Y.Fault monitoring of batch process based on moving window SVDD[J].Information and Control, 2015, 44(5):531-537. http://ic.sia.cn/CN/abstract/abstract12319.shtml
|
[4] |
郭金玉, 陈海彬, 李元.基于在线升级主样本建模的批次过程kNN故障检测方法[J].信息与控制, 2014, 43(4):495-500. http://ic.sia.cn/CN/abstract/abstract12186.shtml
Guo J Y, Chen H B, Li Y.kNN fault detection method for batch process based on principal sample modeling upgraded online[J].Information and Control, 2014, 43(4):495-500. http://ic.sia.cn/CN/abstract/abstract12186.shtml
|
[5] |
王亚君, 周岐.基于多动态核PCA的统计过程监测策略研究[J].辽宁工业大学学报:自然科学版, 2012, 32(5):295-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngxyxb201205005
Wang Y J, Zhou Q.Research on statistical process monitoring strategy based on multi-dynamic kernel PCA[J].Journal of Liaoning University of Technology:Natural Science Edition, 2012, 32(5):295-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngxyxb201205005
|
[6] |
许洁, 胡寿松, 申忠宇.基于改进多尺度核主元分析的化工过程故障检测与诊断方法研究[J].仪器仪表学报, 2010, 31(1):51-55. http://d.wanfangdata.com.cn/Periodical_yqyb201001009.aspx
Xu J, Hu S S, Shen Z Y.Fault detection and diagnosis of chemical process based on an improved multi-scale KPCA[J].Chinese Journal of Scientific Instrument, 2010, 31(1):51-55. http://d.wanfangdata.com.cn/Periodical_yqyb201001009.aspx
|
[7] |
ZhaoXQ, WangXM, Wu Y. An improved FVS-KPCA method of fault detection on TE process[C]//Third International Conference on Digital Manufacturing and Automation. Piscataway, NJ, USA: IEEE, 2012: 186-189.
|
[8] |
魏秀业, 潘宏侠, 王福杰.基于粒子群优化的核主元分析特征的提取技术[J].振动、测试与诊断, 2009, 29(2):162-166, 240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdcsyzd200902009
WeiXY, Pan H X, Wang F J.Feature extraction based on kernel principal component analysis optimized by particle swarm optimization algorithm[J].Journal of Vibration, Measurement & Diagnosis, 2009, 29(2):162-166, 240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdcsyzd200902009
|
[9] |
Xiao Y W, ZhangXH.Novel nonlinear process monitoring and fault diagnosis method based on KPCA-ICA and MSVMs[J].Journal of Control, Automation and Electrical Systems, 2016, 27(3):289-299. doi: 10.1007/s40313-016-0232-8
|
[10] |
Joshph A A, Tokumoto T, Ozawa S.Online feature extraction based on accelerated kernel principal component analysis for data stream[J].Evolving Systems, 2016, 7(1):15-27. doi: 10.1007/s12530-015-9131-7
|
[11] |
He X, Cai D, Yan S, et al. Neighborhood preserving embedding[C]//Proceedings of the Tenth IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2005: 1208-1213.
|
[12] |
Hu K, Yuan J.Multivariate statistical process control based on multiway locality preserving projections[J].Journal of Process Control, 2008, 18(7):797-807. https://www.sciencedirect.com/science/article/pii/S0959152407001679
|
[13] |
Cai D, He X, Han J, et al.OrthogonalLaplacianfaces for face recognition[J].IEEE Transactions on Image Processing, 2006, 15(11):3608-3614. doi: 10.1109/TIP.2006.881945
|
[14] |
He F, Xu J W.A novel process monitoring and fault detection approach based on statistics locality preserving projections[J].Journal of Process Control, 2016, 37(5):46-57. https://www.sciencedirect.com/science/article/pii/S0959152415002140
|
[15] |
Jiang R, Fu W J, Wen L, et al.Dimensionality reduction on Anchorgraph with an efficient locality preserving projection[J].Journal of Process Control, 2016, 187:109-118. https://www.sciencedirect.com/science/article/pii/S0925231215018536
|
[16] |
Cai D, He X, Han J, et al.Orthogonal laplacianfaces for face recognition[J].IEEE Transactions on Image Processing, 2006, 15(11):3608-3614. doi: 10.1109/TIP.2006.881945
|
[17] |
Luo L J, Bao S Y, Mao J F, et al.Nonlinear process monitoring based on kernel global-local preserving projections[J].Journal of Process Control, 2016, 38:11-21. doi: 10.1016/j.jprocont.2015.12.005
|
[18] |
He X, Niyogi P.Locality preserving projections[J].Advances in Neural Information Processing Systems, 2005, 45(1):186-197. https://papers.nips.cc/paper/2359-locality-preserving-projections
|
[19] |
Downs J J, VogelEF.A plant-wide industrial process control problem[J].Computers and Chemical Engineering, 1993, 17(3):245-255. doi: 10.1016/0098-1354(93)80018-I
|
[20] |
Mcavoy T J, Ye N.Base control for the Tennessee Eastman problem[J].Computers & Chemical Engineering, 1994, 18(5):383-413. doi: 10.1002/aic.690320109/pdf
|
[21] |
Lee G, Han C, YoonES.Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS[J].Industrial & Engineering Chemistry Research, 2004, 43(25):8037-8048. doi: 10.1021/ie049624u?src=recsys
|
[22] |
Yin S, Ding S X, Haghani A, et al.A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J].Journal of Process Control, 2012, 22(9):1567-1581. doi: 10.1016/j.jprocont.2012.06.009
|
[23] |
Villegas T, Fuente M J, Rodríguez M. Principal component analysis for fault detection and diagnosis. experience with a pilot plant[C]//Proceedings of the 9th WSEAS International Conference on Computational Intelligence, Man-machine Systems and Cybernetics. Piscataway, NJ, USA: IEEE, 2010.
|
[24] |
Sun B, Liu L, Lei W.Rotor fault diagnosis method based on orthogonal locality preserving projection[J].China Mechanical Engineering, 2014, 25(16):2219-2224.
|
[25] |
Schölkopf B, Smola A, MüllerKR.Kernel principal component analysis[M]//Advances in kernel methods.Cambridge, MA, USA:MIT Press, 1997:555-559.
|
[26] |
Cho J H, Lee J M, Sang W C, et al.Fault identification for process monitoring using kernel principal component analysis[J].Chemical Engineering Science, 2005, 60(1):279-288. doi: 10.1016/j.ces.2004.08.007
|
[27] |
Cheng J, Liu Q, Lu H, et al.Supervised kernel locality preserving projections for face recognition[J].Neurocomputing, 2005, 67(1):443-449. https://www.sciencedirect.com/science/article/pii/S0925231204005594
|
[28] |
Jin Y.Kernel based orthogonal locality preserving projections for face recognition[J].Journal of Electronics & Information Technology, 2009, 31(2):283-287. http://rvc.eng.miami.edu/dt/papers/2013_Fisher_Locality_Preserving_Projections_for_Face_Recognition.pdf
|
[29] |
Li N, Yang Y.Ensemble kernel principal component analysis for improved nonlinear process monitoring[J].Industrial & Engineering Chemistry Research, 2015, 54(1):318-329. doi: 10.1021/ie503034j
|
[1] | SUN Ziwen, JIN Hao. Integrated Learning ICPS Intrusion Detection Model of Deep Auto-encoder Network[J]. INFORMATION AND CONTROL, 2021, 50(5): 591-601. DOI: 10.13976/j.cnki.xk.2021.0569 |
[2] | JIN Huaiping, LI Jiangang, QIAN Bin, CHEN Xiangguang, YANG Biao. Soft Sensor Development Based on Ensemble Just-in-time Learning with Multimodal Perturbation[J]. INFORMATION AND CONTROL, 2020, 49(3): 257-266. DOI: 10.13976/j.cnki.xk.2020.9311 |
[3] | PAN Bei, JIN Huaiping, YANG Biao, FENG Lihui, CHEN Xiangguang. Soft Sensor Development Based on Ensemble Locally Weighted Partial Least Squares Using Diverse Weighted Similarity Measures[J]. INFORMATION AND CONTROL, 2019, 48(2): 217-223, 231. DOI: 10.13976/j.cnki.xk.2019.8156 |
[4] | XIA Luyue, WANG Haining, ZHU Pengfei, PAN Haitian. Soft-Sensor Modeling Method Using Kernel Principal Component Analysis bagging Ensemble Neural Network[J]. INFORMATION AND CONTROL, 2015, 44(5): 519-524. DOI: 10.13976/j.cnki.xk.2015.0519 |
[5] | ZHANG Dongbo, HUANG Kunxin. A Neural Network Ensemble Model Adapted to Multi-class Problem[J]. INFORMATION AND CONTROL, 2013, 42(5): 583-588. DOI: 10.3724/SP.J.1219.2013.00583 |
[6] | ZHU Jinlin, ZHANG Zhengdao, PAN Feng. Fault Identification for Missing Data Systems with a Dynamic Bayesian Network Approach[J]. INFORMATION AND CONTROL, 2013, 42(4): 499-505. DOI: 10.3724/SP.J.1219.2013.00499 |
[7] | TANG Hongzhong, XU Yu, ZHANG Dongbo, GUO Xuefeng. A Diversity Neural Network Ensemble Method Based on Object Data Correction[J]. INFORMATION AND CONTROL, 2013, 42(1): 58-63,70. DOI: 10.3724/SP.J.1219.2013.00058 |
[8] | ZHANG Dong-bo, WANG Yao-nan. On Dynamic Adaptive Selection Method for Neural Network Ensemble[J]. INFORMATION AND CONTROL, 2007, 36(4): 434-440. |
[9] | ZHAO Yue, MU Zhi-chun, PAN Xiu-qin, LI Xia-li. A Dynamic Bayesian Network Algorithm Based on Semi-Supervised Active Learning[J]. INFORMATION AND CONTROL, 2007, 36(2): 224-229,244. |
[10] | HE Wei, PAN Quan, ZHANG Hong-cai. Development and Prospect of Bayesian Network Structure Learning[J]. INFORMATION AND CONTROL, 2004, 33(2): 185-190. |