WANG Dong, ZHANG Jie, SHAO Feng, JIN Jiucai, MAO Xingpeng. LQR-based Waypoint Tracking Control of Catamaran USV with Double Propulsion System[J]. INFORMATION AND CONTROL, 2017, 46(5): 587-592. DOI: 10.13976/j.cnki.xk.2017.0587
Citation: WANG Dong, ZHANG Jie, SHAO Feng, JIN Jiucai, MAO Xingpeng. LQR-based Waypoint Tracking Control of Catamaran USV with Double Propulsion System[J]. INFORMATION AND CONTROL, 2017, 46(5): 587-592. DOI: 10.13976/j.cnki.xk.2017.0587

LQR-based Waypoint Tracking Control of Catamaran USV with Double Propulsion System

More Information
  • Received Date: November 06, 2016
  • Revised Date: March 08, 2017
  • Accepted Date: March 02, 2017
  • Available Online: December 01, 2022
  • Published Date: October 19, 2017
  • To solve the automatic waypoint tracking problem of a double-propulsion catamaran USV developed independently, a waypoint tracking controller is designed based on linear quadratic regulator theory and the line-of-sight algorithm with a three-degrees-of-freedom dynamic model, which is modified based on theoretical equations and the data of a lake experiment. Then, simulation analysis of the designed waypoint tracking controller is performed, and results are compared with the ones obtained by the PID method. In addition, several single-and multi-waypoint tracking tests in a lake experiment are performed based on the designed waypoint tracking controller. Results show good tracking performance, which indicates that the designed waypoint tracking controller can adapt to double-propulsion catamaran USVs.

  • [1]
    Bertram V. Unmanned surface vehicles-a survey[J]. SkibstekniskSelskab, 2008:1-4. http://www.intpowertechcorp.com/USVsurvey_DTU.pdf
    [2]
    Manley J E. Unmanned surface vehicles, 15 years of development[C]//Proceedings of the 2008 Oceans MTS/IEEE Quebec Conference and Exhibition. Piscataway, NJ, USA:IEEE, 2008:1-4. http://www.academia.edu/27781540/Exploration_vs._Exploitation_in_Differential_Evolution
    [3]
    Yuh J, Marani G, Blidberg D R. Applications of marine robotic vehicles[J]. Intelligent Service Robotics, 2011, 4:221-231. doi: 10.1007/s11370-011-0096-5
    [4]
    Yan R J, Pang S, Sun H B, et al. Development and missions of unmanned surface vehicle[J]. Journal of Marine Science & Application, 2010, 9(4):451-457. http://www.wenkuxiazai.com/doc/cb7110f3f61fb7360b4c65b9.html
    [5]
    Yaakob O, Mohamed Z, Hanafiah M. Development of unmanned surface vehicle (USV) for sea patrol and environmental monitoring[J]. Academia Edu, 2012:20-22. http://www.academia.edu/2059075/DEVELOPMENT_OF_UNMANNED_SURFACE_VEHICLE_USV_FOR_SEA_PATROL_AND_ENVIRONMENTAL_MONITORING_International_Conference_on_Marine_Technology_Kuala_Terengganu_Malaysia_20-22_October_2012
    [6]
    Wang M. The development of and experiments on an unmanned surface vehicle platform for water sampling and monitoring[D]. Hong Kong:The Hong Kong University of Science and Technology, 2012. http://www.sciencedirect.com/science/article/pii/S1367578816300219
    [7]
    金久才, 张杰, 马毅, 等.一种无人船水深测量系统及试验[J].海洋测绘, 2013, 33(2):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201302017.htm

    Jin J C, Zhang J, Ma Y, et al. An unmanned surface vehicle for bathymetry[J]. Hydrographic Surveying and Charting, 2013, 33(2):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201302017.htm
    [8]
    Cuschieri J. Estimation and measurement of the acoustic signature of unmanned surface and underwater vehicles[J]. Journal of the Acoustical Society of America, 2010, 127(3):1813. doi: 10.1121/1.3384174
    [9]
    Do K D, Pan J. Global waypoint tracking control of underactuated ships under relaxed assumptions[C]//Proceedings of the IEEE Conference on Decision and Control. Piscataway, NJ, USA:IEEE, 2003:1244-1249.
    [10]
    Lekkas A M, Fossen T I. Integral LOS path following for curved paths based on a monotone cubic hermite spline parametrization[J]. IEEE Transactions on Control Systems Technology, 2014, 99:1-7. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6767080
    [11]
    Pettersen K Y, Lefeber E. Way-point tracking control of ships[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Piscataway, NJ, USA:IEEE, 2001:940-945.
    [12]
    Fossen T I, Breivik M, Skjetne R. Line-of-sight path following of underactuated marine craft[C]//Proceedings of the IFAC MCMC'03. Kingstone, USA:IFAC, 2003:1-6.
    [13]
    Moreira L, Fossen T I, Soares C G. Path following control system for a tanker ship model[J]. Ocean Engineering, 2007, 34:2074-2085. doi: 10.1016/j.oceaneng.2007.02.005
    [14]
    郑大钟.线性系统理论(第2版)[M].北京:清华大学出版社, 2002.

    Zheng D Z. Linear system theory (2nd ed)[M]. Beijing:Tsinghua University Press, 2002.
    [15]
    Naeem W, Xu T, Sutton R, et al. The design of a navigation, guidance, and control system for an unmanned surface vehicle for environmental monitoring[J]. Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, 2008, 222(2):67-79. doi: 10.1243/14750902JEME80
    [16]
    Sharma S K, Sutton W N R. An autopilot based on a local control network design for an unmanned surface vehicle[J]. Journal of Navigation, 2012, 65(2):281-301. doi: 10.1017/S0373463311000701
    [17]
    金久才, 张杰, 邵峰, 等.一种海洋环境监测无人船系统及其海洋应用[J].海岸工程, 2015, 34(3):87-92. http://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201503009.htm

    Jin J C, Zhang J, Shao F, et al. An unmanned surface vehicle for ocean environment monitoring and its oceanic application[J]. Coastal Engineering, 2015, 34(3):87-92. http://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201503009.htm
    [18]
    李长喜. 不完全驱动船舶直线航迹控制系统的研究与设计[D]. 杭州: 浙江工业大学, 2008. http://d.wanfangdata.com.cn/Thesis/Y1341125

    Li C X. Research and design of straight-line tracking control systems for underactuatedship[D]. Hangzhou:Zhejiang University of Technology, 2008. http://d.wanfangdata.com.cn/Thesis/Y1341125
    [19]
    Fossen T I. Handbook of marine craft hydrodynamics and motion control[M]. New York, USA:John Wiley & Sons Ltd, 2011.
    [20]
    Holden C, Fossen T I. A nonlinear 7-DOF model for U-tanks of arbitrary shape[J]. Ocean Engineering, 2012, 45(5):22-37. http://www.sciencedirect.com/science/article/pii/S0029801812000686
    [21]
    Araki M, Sadat-Hosseini H, Sanada Y, et al. Estimating maneuvering coefficients using system identification methods with experimental, system-based, and CFD free-running trial data[J]. Ocean Engineering, 2012, 51(2):63-84. http://www.sciencedirect.com/science/article/pii/S002980181200162X
    [22]
    刘豹, 唐万生.现代控制理论(第3版)[M].北京:机械工业出版社, 2007.

    Liu B, Tang W S. Modern control theory(3rd ed)[M]. Beijing:China Machine Press, 2007.
  • Related Articles

    [1]CHEN Yang, WANG Hongxi, ZHANG Lanyong. Control of Wheel-legged Balancing Robot[J]. INFORMATION AND CONTROL, 2023, 52(5): 648-659. DOI: 10.13976/j.cnki.xk.2023.2533
    [2]QIAN Yan, WANG Zhaoqiang, LI Peixing, LIANG Wei, LU Chenhui. Automatic Parking Control Method Based on the Linear-quadratic Regulator[J]. INFORMATION AND CONTROL, 2021, 50(6): 660-668. DOI: 10.13976/j.cnki.xk.2021.0592
    [3]LI Lili, SONG Linyang, GUO Jiajun, HAO Liying. Event-triggered Output Regulation for a Class of Switched Linear Systems[J]. INFORMATION AND CONTROL, 2019, 48(2): 245-250. DOI: 10.13976/j.cnki.xk.2019.8253
    [4]WANG Zhengxi, CHEN Yang, ZHENG Xiujuan, CHENG Lei. Quadrotor UAV Control with Disturbance Based on Aerodynamic Parameter Estimation[J]. INFORMATION AND CONTROL, 2018, 47(6): 663-670. DOI: 10.13976/j.cnki.xk.2018.7490
    [5]WANG Jingrong, LI Zonggang, DU Yajiang. LQR-based Optimal Leader-follower Consensus in Heterogeneous Multi-agent Systems[J]. INFORMATION AND CONTROL, 2018, 47(4): 468-472. DOI: 10.13976/j.cnki.xk.2018.7005
    [6]LIU Wendong, LI Huabin, BAO Weimin, SUN Sheng. Design of Extended Reduced Controller of the System with Uncertainties[J]. INFORMATION AND CONTROL, 2017, 46(2): 252-256. DOI: 10.13976/j.cnki.xk.2017.0252
    [7]JIA Xiaoyan. An Energy Control Method for Fuel Cell Hybrid Power Vehicles[J]. INFORMATION AND CONTROL, 2012, 41(6): 786-792. DOI: 10.3724/SP.J.1219.2012.00786
    [8]XIA Xiaohu, GE Yunjian. Novel Linear Quadratic Terminal Continuous Control and Its Application to Helicopter Autonomous Soft Landing[J]. INFORMATION AND CONTROL, 2011, 40(1): 67-72.
    [9]GE Jinlai, ZHANG Chenghui, CUI Naxin. Fuzzy Self-tuning PID Controller in the 3-DOF Helicopter Experimental System[J]. INFORMATION AND CONTROL, 2010, 39(3): 342-347.
    [10]CAI Chen-xiao, ZOU Yun, XU Sheng-yuan. Quadratic Stability and Quadratic Stabilizability for Singularly Perturbed System[J]. INFORMATION AND CONTROL, 2005, 34(3): 344-349.

Catalog

    Article views (674) PDF downloads (236) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return