Citation: | WANG Dong, ZHANG Jie, SHAO Feng, JIN Jiucai, MAO Xingpeng. LQR-based Waypoint Tracking Control of Catamaran USV with Double Propulsion System[J]. INFORMATION AND CONTROL, 2017, 46(5): 587-592. DOI: 10.13976/j.cnki.xk.2017.0587 |
To solve the automatic waypoint tracking problem of a double-propulsion catamaran USV developed independently, a waypoint tracking controller is designed based on linear quadratic regulator theory and the line-of-sight algorithm with a three-degrees-of-freedom dynamic model, which is modified based on theoretical equations and the data of a lake experiment. Then, simulation analysis of the designed waypoint tracking controller is performed, and results are compared with the ones obtained by the PID method. In addition, several single-and multi-waypoint tracking tests in a lake experiment are performed based on the designed waypoint tracking controller. Results show good tracking performance, which indicates that the designed waypoint tracking controller can adapt to double-propulsion catamaran USVs.
[1] |
Bertram V. Unmanned surface vehicles-a survey[J]. SkibstekniskSelskab, 2008:1-4. http://www.intpowertechcorp.com/USVsurvey_DTU.pdf
|
[2] |
Manley J E. Unmanned surface vehicles, 15 years of development[C]//Proceedings of the 2008 Oceans MTS/IEEE Quebec Conference and Exhibition. Piscataway, NJ, USA:IEEE, 2008:1-4. http://www.academia.edu/27781540/Exploration_vs._Exploitation_in_Differential_Evolution
|
[3] |
Yuh J, Marani G, Blidberg D R. Applications of marine robotic vehicles[J]. Intelligent Service Robotics, 2011, 4:221-231. doi: 10.1007/s11370-011-0096-5
|
[4] |
Yan R J, Pang S, Sun H B, et al. Development and missions of unmanned surface vehicle[J]. Journal of Marine Science & Application, 2010, 9(4):451-457. http://www.wenkuxiazai.com/doc/cb7110f3f61fb7360b4c65b9.html
|
[5] |
Yaakob O, Mohamed Z, Hanafiah M. Development of unmanned surface vehicle (USV) for sea patrol and environmental monitoring[J]. Academia Edu, 2012:20-22. http://www.academia.edu/2059075/DEVELOPMENT_OF_UNMANNED_SURFACE_VEHICLE_USV_FOR_SEA_PATROL_AND_ENVIRONMENTAL_MONITORING_International_Conference_on_Marine_Technology_Kuala_Terengganu_Malaysia_20-22_October_2012
|
[6] |
Wang M. The development of and experiments on an unmanned surface vehicle platform for water sampling and monitoring[D]. Hong Kong:The Hong Kong University of Science and Technology, 2012. http://www.sciencedirect.com/science/article/pii/S1367578816300219
|
[7] |
金久才, 张杰, 马毅, 等.一种无人船水深测量系统及试验[J].海洋测绘, 2013, 33(2):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201302017.htm
Jin J C, Zhang J, Ma Y, et al. An unmanned surface vehicle for bathymetry[J]. Hydrographic Surveying and Charting, 2013, 33(2):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201302017.htm
|
[8] |
Cuschieri J. Estimation and measurement of the acoustic signature of unmanned surface and underwater vehicles[J]. Journal of the Acoustical Society of America, 2010, 127(3):1813. doi: 10.1121/1.3384174
|
[9] |
Do K D, Pan J. Global waypoint tracking control of underactuated ships under relaxed assumptions[C]//Proceedings of the IEEE Conference on Decision and Control. Piscataway, NJ, USA:IEEE, 2003:1244-1249.
|
[10] |
Lekkas A M, Fossen T I. Integral LOS path following for curved paths based on a monotone cubic hermite spline parametrization[J]. IEEE Transactions on Control Systems Technology, 2014, 99:1-7. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6767080
|
[11] |
Pettersen K Y, Lefeber E. Way-point tracking control of ships[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Piscataway, NJ, USA:IEEE, 2001:940-945.
|
[12] |
Fossen T I, Breivik M, Skjetne R. Line-of-sight path following of underactuated marine craft[C]//Proceedings of the IFAC MCMC'03. Kingstone, USA:IFAC, 2003:1-6.
|
[13] |
Moreira L, Fossen T I, Soares C G. Path following control system for a tanker ship model[J]. Ocean Engineering, 2007, 34:2074-2085. doi: 10.1016/j.oceaneng.2007.02.005
|
[14] |
郑大钟.线性系统理论(第2版)[M].北京:清华大学出版社, 2002.
Zheng D Z. Linear system theory (2nd ed)[M]. Beijing:Tsinghua University Press, 2002.
|
[15] |
Naeem W, Xu T, Sutton R, et al. The design of a navigation, guidance, and control system for an unmanned surface vehicle for environmental monitoring[J]. Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, 2008, 222(2):67-79. doi: 10.1243/14750902JEME80
|
[16] |
Sharma S K, Sutton W N R. An autopilot based on a local control network design for an unmanned surface vehicle[J]. Journal of Navigation, 2012, 65(2):281-301. doi: 10.1017/S0373463311000701
|
[17] |
金久才, 张杰, 邵峰, 等.一种海洋环境监测无人船系统及其海洋应用[J].海岸工程, 2015, 34(3):87-92. http://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201503009.htm
Jin J C, Zhang J, Shao F, et al. An unmanned surface vehicle for ocean environment monitoring and its oceanic application[J]. Coastal Engineering, 2015, 34(3):87-92. http://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201503009.htm
|
[18] |
李长喜. 不完全驱动船舶直线航迹控制系统的研究与设计[D]. 杭州: 浙江工业大学, 2008. http://d.wanfangdata.com.cn/Thesis/Y1341125
Li C X. Research and design of straight-line tracking control systems for underactuatedship[D]. Hangzhou:Zhejiang University of Technology, 2008. http://d.wanfangdata.com.cn/Thesis/Y1341125
|
[19] |
Fossen T I. Handbook of marine craft hydrodynamics and motion control[M]. New York, USA:John Wiley & Sons Ltd, 2011.
|
[20] |
Holden C, Fossen T I. A nonlinear 7-DOF model for U-tanks of arbitrary shape[J]. Ocean Engineering, 2012, 45(5):22-37. http://www.sciencedirect.com/science/article/pii/S0029801812000686
|
[21] |
Araki M, Sadat-Hosseini H, Sanada Y, et al. Estimating maneuvering coefficients using system identification methods with experimental, system-based, and CFD free-running trial data[J]. Ocean Engineering, 2012, 51(2):63-84. http://www.sciencedirect.com/science/article/pii/S002980181200162X
|
[22] |
刘豹, 唐万生.现代控制理论(第3版)[M].北京:机械工业出版社, 2007.
Liu B, Tang W S. Modern control theory(3rd ed)[M]. Beijing:China Machine Press, 2007.
|
[1] | CHEN Yang, WANG Hongxi, ZHANG Lanyong. Control of Wheel-legged Balancing Robot[J]. INFORMATION AND CONTROL, 2023, 52(5): 648-659. DOI: 10.13976/j.cnki.xk.2023.2533 |
[2] | QIAN Yan, WANG Zhaoqiang, LI Peixing, LIANG Wei, LU Chenhui. Automatic Parking Control Method Based on the Linear-quadratic Regulator[J]. INFORMATION AND CONTROL, 2021, 50(6): 660-668. DOI: 10.13976/j.cnki.xk.2021.0592 |
[3] | LI Lili, SONG Linyang, GUO Jiajun, HAO Liying. Event-triggered Output Regulation for a Class of Switched Linear Systems[J]. INFORMATION AND CONTROL, 2019, 48(2): 245-250. DOI: 10.13976/j.cnki.xk.2019.8253 |
[4] | WANG Zhengxi, CHEN Yang, ZHENG Xiujuan, CHENG Lei. Quadrotor UAV Control with Disturbance Based on Aerodynamic Parameter Estimation[J]. INFORMATION AND CONTROL, 2018, 47(6): 663-670. DOI: 10.13976/j.cnki.xk.2018.7490 |
[5] | WANG Jingrong, LI Zonggang, DU Yajiang. LQR-based Optimal Leader-follower Consensus in Heterogeneous Multi-agent Systems[J]. INFORMATION AND CONTROL, 2018, 47(4): 468-472. DOI: 10.13976/j.cnki.xk.2018.7005 |
[6] | LIU Wendong, LI Huabin, BAO Weimin, SUN Sheng. Design of Extended Reduced Controller of the System with Uncertainties[J]. INFORMATION AND CONTROL, 2017, 46(2): 252-256. DOI: 10.13976/j.cnki.xk.2017.0252 |
[7] | JIA Xiaoyan. An Energy Control Method for Fuel Cell Hybrid Power Vehicles[J]. INFORMATION AND CONTROL, 2012, 41(6): 786-792. DOI: 10.3724/SP.J.1219.2012.00786 |
[8] | XIA Xiaohu, GE Yunjian. Novel Linear Quadratic Terminal Continuous Control and Its Application to Helicopter Autonomous Soft Landing[J]. INFORMATION AND CONTROL, 2011, 40(1): 67-72. |
[9] | GE Jinlai, ZHANG Chenghui, CUI Naxin. Fuzzy Self-tuning PID Controller in the 3-DOF Helicopter Experimental System[J]. INFORMATION AND CONTROL, 2010, 39(3): 342-347. |
[10] | CAI Chen-xiao, ZOU Yun, XU Sheng-yuan. Quadratic Stability and Quadratic Stabilizability for Singularly Perturbed System[J]. INFORMATION AND CONTROL, 2005, 34(3): 344-349. |