WANG Guang, SUN Chengyuan, YIN Shen. Quality-related Fault Detection Approach Based on Dynamic Total Principal Component Regression Component Regression[J]. INFORMATION AND CONTROL, 2017, 46(6): 671-676. DOI: 10.13976/j.cnki.xk.2017.0671
Citation: WANG Guang, SUN Chengyuan, YIN Shen. Quality-related Fault Detection Approach Based on Dynamic Total Principal Component Regression Component Regression[J]. INFORMATION AND CONTROL, 2017, 46(6): 671-676. DOI: 10.13976/j.cnki.xk.2017.0671

Quality-related Fault Detection Approach Based on Dynamic Total Principal Component Regression Component Regression

More Information
  • Received Date: November 08, 2016
  • Revised Date: February 19, 2017
  • Accepted Date: January 10, 2017
  • Available Online: December 01, 2022
  • Published Date: December 19, 2017
  • On the basis of the structure of auto-regressive moving average exogenous (ARMAX), we propose a dynamic total principal component regression (DT-PCR) method for dynamic performance of quality-related fault detection. We form the input augmented matrix in the method based on the delay value of the input. The augmented matrix is divided into two orthogonal parts, namely, quality-related and quality-unrelated. We design a simple fault detection strategy based on statistics in two subspaces that correspond to the two parts. The output prediction accuracy of DT-PCR is better than that of former methods. The prediction and fault detection performance of the proposed approach are proved by a numerical example and the Tennessee Eastman process through a comparison by using total partial least squares (TPLS).

  • [1]
    王兵, 许少华, 孟耀华.基于半监督竞争学习过程神经网络的抽油机故障诊断[J].信息与控制, 2014, 43(2):235-240. http://ic.sia.cn/CN/abstract/abstract12216.shtml

    Wang B, Xu S, Meng Y. Fault diagnosis of pumping unit based on semi-supervised competitive learning process neural network[J]. Information and Control, 2014, 43(2):235-240. http://ic.sia.cn/CN/abstract/abstract12216.shtml
    [2]
    文成林, 吕菲亚, 包哲静, 等.基于数据驱动的微小故障诊断方法综述[J].自动化学报, 2016, 42(9):1285-1299. http://www.cnki.com.cn/Article/CJFDTotal-MOTO201609001.htm

    Wen C, Lü F, Bao Z. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42(9):1285-1299. http://www.cnki.com.cn/Article/CJFDTotal-MOTO201609001.htm
    [3]
    李荣雨, 荣冈.基于故障映射向量和结构化残差的主元分析(PCA)故障隔离[J].控制理论与应用, 2008, 25(6):1099-1104. http://d.wanfangdata.com.cn/Periodical/kzllyyy200806025

    LI R, RONG G. Principal component analysis (PCA) of fault isolation based on fault mapping vector and structured residual[J]. Control Theory & Applications, 2008, 25(6):1099-1104. http://d.wanfangdata.com.cn/Periodical/kzllyyy200806025
    [4]
    薄翠梅, 王执铨, 张广明.基于KPCA-PNN的复杂工业过程集成故障辨识方法[J].信息与控制, 2009, 38(1):98-104. http://ic.sia.cn/CN/abstract/abstract9615.shtml

    Bo C, Wang Z, Zhang G. An integrated fault identification method based on KPCA-PNN for complex industrial process[J]. Information and Control, 2009, 38(1):98-104. http://ic.sia.cn/CN/abstract/abstract9615.shtml
    [5]
    Yin S, Wang G, Yang X. Robust PLS approach for KPI-related prediction and diagnosis against outliers and missing data[J]. International Journal of Systems Science, 2014, 45(7):1375-1382. doi: 10.1080/00207721.2014.886136
    [6]
    周悦, 岳林蓓, 张力心, 等.基于粒子群变异的克隆选择算法的结构故障检测与分类[J].信息与控制, 2015, 44(4):436-441. http://ic.sia.cn/CN/abstract/abstract12304.shtml

    Zhou Y, Yue L B, Zhang L X. Structural damage detection and classification based on clone selection algorithm of particle swarm mutation[J]. Information and Control, 2015, 44(4):436-441. http://ic.sia.cn/CN/abstract/abstract12304.shtml
    [7]
    罗明英, 侍洪波, 谭帅.基于正交独立成分分析的过程数据建模[J]信息与控制, 2016, 45(5):551-555. http://ic.sia.cn/CN/abstract/abstract12456.shtml

    Luo M, SHI H, TAN S. Process data modeling based on orthogonal independent component analysis[J]. Information and Control, 2016, 45(5):551-555. http://ic.sia.cn/CN/abstract/abstract12456.shtml
    [8]
    赵立杰, 王纲, 李元.非线性主元分析故障检测和诊断方法及应用[J].信息与控制, 2001, 30(4):359-364. http://ic.sia.cn/CN/abstract/abstract9077.shtml

    Zhao L, Wang G, Li Y. Study of a nonlinear PCA fault detection and diagnosis method[J]. Information and Control, 2001, 30(4):359-364. http://ic.sia.cn/CN/abstract/abstract9077.shtml
    [9]
    Yin S, Zhu X, Kaynak O. Improved PLS focused on key performance-indicator-related fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1651-1658. doi: 10.1109/TIE.2014.2345331
    [10]
    Zhou D, Li G, Qin S J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1):168-178. doi: 10.1002/aic.11977/full
    [11]
    Yin S, Ding S X, Zhang P, et al. Study on modifications of PLS approach for process monitoring[J]. IFAC Proceedings Volumes, 2011, 44(1):12389-12394. doi: 10.3182/20110828-6-IT-1002.02876
    [12]
    Qin S J, Zheng Y. Quality relevant and process relevant fault monitoring with concurrent projection to latent structures[J]. AIChE Journal, 2013, 59(2):496-504. doi: 10.1002/aic.v59.2
    [13]
    孙茂伟, 杨慧中. 局部加权混合核偏最小二乘算法及其在软测量中的应用[J]. 信息与控制, 2015, 44(4): 481-486. http://ic.sia.cn/CN/abstract/abstract12311.shtml

    Sun M, Yang F, Bao Z. Local weighted mixed kernel partial least squares algorithm and its applications to soft-sensing[J]. Information and Control, 2015, 44(4):481-486. http://ic.sia.cn/CN/abstract/abstract12311.shtml
    [14]
    夏陆岳, 王海宁, 朱鹏飞, 等. KPCA-bagging集成神经网络软测量建模方法[J]. 信息与控制, 2015, 44(5): 519-524. http://ic.sia.cn/CN/abstract/abstract12317.shtml

    Soft sensor modeling method using kernel principal component analysis ensamble neural network[J]. Information and Control, 2015, 44(5):519-524. http://ic.sia.cn/CN/abstract/abstract12317.shtml
    [15]
    刘爽, 吕永波, 张仲义.基于AHP和PCA的多指标评价建模方法及应用[J].信息与控制, 2015, 44(4):416-421. http://ic.sia.cn/CN/abstract/abstract12301.shtml

    Liu S, Lü Y, Zhang Z. Multi-index evaluation modeling method based on AHP and PCA and its application[J]. Information and Control, 2015, 44(4):416-421. http://ic.sia.cn/CN/abstract/abstract12301.shtml
    [16]
    周东华, 胡艳艳.动态系统的故障诊断技术[J].自动化学报, 2009(6):748-758. http://www.cqvip.com/Main/Detail.aspx?id=30708449

    Zhou D H, Hu Y Y. Fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2009, 35(6):748-758. http://www.cqvip.com/Main/Detail.aspx?id=30708449
    [17]
    Jia Q, Zhang Y. Quality-related fault detection approach based on dynamic kernel partial least squares[J]. Chemical Engineering Research and Design, 2016, 106:242-252. doi: 10.1016/j.cherd.2015.12.015
    [18]
    Dong Y, Qin S J. Dynamic-inner partial least squares for dynamic data modeling[J]. IFAC-PapersOnLine, 2015, 48(8):117-122. doi: 10.1016/j.ifacol.2015.08.167
    [19]
    Wang G, Yin S. Quality-related fault detection approach based on orthogonal signal correction and modified PLS[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2):398-405. https://www.researchgate.net/publication/274404230_Quality-Related_Fault_Detection_Approach_Based_on_Orthogonal_Signal_Correction_and_Modified_PLS
    [20]
    Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and intelligent laboratory systems, 1995, 30(1):179-196. doi: 10.1016/0169-7439(95)00076-3

Catalog

    Article views (625) PDF downloads (179) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return