Citation: | YU Deliang, LI Yanmei, DING Bao, REN Yulong, QI Weigui. Failure Diagnosis Method for Electric Submersible Plunger Pump Based on Mind Evolutionary Algorithm and Back Propagation Neural Network[J]. INFORMATION AND CONTROL, 2017, 46(6): 698-705. DOI: 10.13976/j.cnki.xk.2017.0698 |
We propose a failure diagnosis method for an electric submersible plunger pump on the basis of the mind evolutionary algorithm (MEA) and the back propagation (BP) neural network to solve the problem of high failure rate and short pump inspection period of the electric submersible plunger pump. This method can effectively diagnose failure accidents to prolong the pump inspection cycle. To solve the problem of minimal historical fault data and fault data that do not consider the electric submersible plunger pump in the actual production process, an experimental platform that can simulate the working condition of the electric submersible plunger pump is established. First, we simulate different failure states of the electric submersible plunger pump on the experimental platform, and the operating parameters are measured by using a multi-parameter acquisition module fixed at the bottom of the pump and wellhead instruments. Then, the most representative parameters are extracted from those relative operating parameters to structure the failure feature vectors and sample set. We use the sample set to train and validate the failure diagnosis model. Finally, the effectiveness of the fault diagnosis method is verified by the fault data set of the electric submersible plunger pump obtained from the actual production process. Experimental results show that this failure diagnosis method can diagnose the failure states of electric submersible plunger pump accurately and avoid failure accidents. Thus, this method can prolong the pump inspection cycle of the electric submersible plunger pump effectively.
[1] |
王博, 赵海森, 李和明, 等.用于模拟游梁式抽油机电动机动态负荷的测试系统设计及应用[J].中国电机工程学报, 2014, 34(21):88-95. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgdc201421012&dbname=CJFD&dbcode=CJFQ
Wang B, Zhao H S, Li H M, et al. Design and applications of the testing system with dynamic load for beam pumping motor condition[J]. Proceedings of the CSEE, 2014, 34(21):88-95. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgdc201421012&dbname=CJFD&dbcode=CJFQ
|
[2] |
刘合, 郝忠献, 王连刚, 等.人工举升技术现状与发展趋势[J].石油学报, 2015, 36(11):1441-1448. doi: 10.7623/syxb201511014
Liu H, Hao Z X, Wang L G, et al. Current technical status and development trend of artificial lift[J]. Acta Petrolei Sinica, 2015, 36(11):1441-1448. doi: 10.7623/syxb201511014
|
[3] |
Li J Q, Yu L. Using BP nerual networks for the simulation of energy consumption[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, USA:IEEE, 2014:3542-3547. http://ieeexplore.ieee.org/document/6974479/
|
[4] |
Jiang H Y, Dong M, Yang F. Application of BP nerual network into prediction of nitrobenzene compound in toxicity[C]//2nd International Conference on Genetic and Evolutionary Computing, WGEC 2008. Piscataway, NJ, USA:IEEE, 2008:170-173. http://ieeexplore.ieee.org/document/4664683/
|
[5] |
Dan Z, Xu C. The recognition of handwritten digits based on BP neural network and the implementation on Android[C]//3rd International Conference on Intelligent System Design and Engineering Applications. Piscataway, NJ, USA:IEEE, 2013:1498-1501. http://ieeexplore.ieee.org/document/6455316/
|
[6] |
宋涛, 舒涛, 雷荣强, 等.基于蚁群神经网络的发射系统故障诊断[J].火力与指挥控制, 2015, 40(9):143-146. http://d.wanfangdata.com.cn/Periodical_hlyzhkz201509035.aspx
Song T, Shu T, Lei R Q, et al. Research on fault diagnosis for launch system based on ant colony neural network[J]. Fire Control & Command Control, 2015, 40(9):143-146. http://d.wanfangdata.com.cn/Periodical_hlyzhkz201509035.aspx
|
[7] |
张捍东, 陶刘送.粒子群优化BP算法在液压系统故障诊断中应用[J].系统仿真学报, 2016, 28(5):1186-1190. http://www.cqvip.com/QK/96569X/201605/668751859.html
Zhang H D, Tao L S. Application of PSO-BP algorithm in hydraulic system fault diagnosis[J]. Journal of System Simulation, 2016, 28(5):1186-1190. http://www.cqvip.com/QK/96569X/201605/668751859.html
|
[8] |
焦晓璇, 景博, 黄以锋, 等.基于小波包BP_AdaBoost算法的机载燃油泵故障诊断研究[J].仪器仪表学报, 2016, 37(9):1978-1988. http://c.g.wanfangdata.com.cn/periodical/yqyb/2016-9.aspx
Jiao X X, Jing B, Huang Y F, et al. Research on fault diagnosis for airborne fuel pump based on wavelet package and BP_AdaBoost algorithm[J]. Chinese Journal of Scientific Instrument, 2016, 37(9):1978-1988. http://c.g.wanfangdata.com.cn/periodical/yqyb/2016-9.aspx
|
[9] |
刘浩然, 赵翠香, 李轩, 等.一种基于改进遗传算法的神经网络优化算法研究[J].仪器仪表学报, 2016, 37(7):1573-1580. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yqxb201607017&dbname=CJFD&dbcode=CJFQ
Liu H R, Zhao C X, Li X, et al. Study on a neural network optimization algorithm based on improved genetic algorithm[J]. Chinese Journal of Scientific Instrument, 2016, 37(7):1573-1580. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yqxb201607017&dbname=CJFD&dbcode=CJFQ
|
[10] |
周建平, 许燕, 操窘, 等.基于BP神经网络和遗传算法的大功率脉冲电源优化设计[J].焊接学报, 2016, 37(4):9-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjxb201604003&dbname=CJFD&dbcode=CJFQ
Zhou J P, Xu Y, Cao J, et al. High power supply optimization design based on BP neural network and genetic algorithm[J]. Transactions of the China Welding Institution, 2016, 37(4):9-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjxb201604003&dbname=CJFD&dbcode=CJFQ
|
[11] |
苗振华, 孙旭东, 邵诚.一种并行变异自适应遗传算法及其性能分析[J].信息与控制, 2016, 45(2):142-150. http://ic.sia.cn/CN/abstract/abstract12376.shtml
Miao Z H, Sun X D, Shao C. An adaptive genetic algorithm with parallel mutation and its performance evaluation[J]. Information & Control, 2016, 45(2):142-150. http://ic.sia.cn/CN/abstract/abstract12376.shtml
|
[12] |
肖红, 李盼池.改进的量子行为粒子群优化算法及其应用[J].信息与控制, 2016, 45(2):157-164. http://ic.sia.cn/CN/abstract/abstract12378.shtml
Xiao H, Li P C. Improved quantum-behaved particle swarm optimization algorithm and its application[J]. Information & Control, 2016, 45(2):157-164. http://ic.sia.cn/CN/abstract/abstract12378.shtml
|
[13] |
Yang Mao, Ma Jian. Data completing of missing wind power data based on adaptive BP neural network[C]//2016 International Conference on Probabilistic Methods Applied to Power Systems. Piscataway, NJ, USA:IEEE, 2016:1-6. http://ieeexplore.ieee.org/document/7764057/
|
[14] |
Zheng J, Ma Q, Zhou W. Performance comparison of full-batch BP and mini-batch BP algorithm on Spark framework[C]//8th International Conference on Wireless Communications and Signal Processing. Piscataway, NJ, USA:IEEE, 2016:1-5. http://ieeexplore.ieee.org/document/7752505/
|
[15] |
Zhang B, Xu R, Yin X, et al. Research on fault diagnosis for rail vehicle compartment of LED lighting system of analog circuit based on WP-EE and BP neural network[C]//28th Chinese Control and Decision Conference. Piscataway, NJ, USA:IEEE, 2016:2989-2993. http://ieeexplore.ieee.org/document/7531494/
|
[16] |
黄俊, 冯勇建.基于思维进化神经网络的真空绝热板真空度测量精度改进方法研究[J].真空科学与技术学报, 2015, 35(5):528-532. http://www.cqvip.com/QK/95036A/201505/664887479.html
Huang J, Feng Y J. Improved pressure measurement precision for vacuum insulation panel with mind evolutionary algorithm[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(5):528-532. http://www.cqvip.com/QK/95036A/201505/664887479.html
|
[17] |
赵瑞勇, 周新志.基于MEA-BP的微波加热褐煤温度预测[J].传感器与微系统, 2016, 35(10):43-48. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cgqj201610012&dbname=CJFD&dbcode=CJFQ
Zhao R Y, Zhou X Z. Research on temperature prediction of microwave heating lignite based on BP neural network optimized by mind evolutionary algorithm[J]. Transducer and Microsystem Technologies, 2016, 35(10):43-48. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cgqj201610012&dbname=CJFD&dbcode=CJFQ
|
[18] |
丛立华.外围低产油田高效举升节能示范区建设及效果评价[J].石油石化节能, 2016, 21(8):57-59. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gwyt201608026&dbname=CJFD&dbcode=CJFQ
Cong L H. Construction and effect evaluation on high efficient lifting energy-saving demonstration zone of peripheral low-yield oilfield[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2016, 21(8):57-59. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gwyt201608026&dbname=CJFD&dbcode=CJFQ
|
[19] |
于德亮, 邓盛川, 张永明, 等.基于支持向量机的潜油往复式油田抽油机工况诊断方法[J].电工技术学报, 2013, 28(4):248-254. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dgjs201304033&dbname=CJFD&dbcode=CJFQ
Yu D L, Deng S C, Zhang Y M, et al. Working condition diagnosis method based on SVM of submersible plunger pump[J]. Transactions of China Electrotechnical Society, 2013, 28(4):248-254. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dgjs201304033&dbname=CJFD&dbcode=CJFQ
|
[20] |
任伟建, 陶琳.基于粒子群算法的抽油机故障诊断研究[J].系统仿真学报, 2012, 24(2):482-492. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xtfz201202044&dbname=CJFD&dbcode=CJFQ
Ren J W, Tao L. Research on pump-jack fault diagnosis method based on particle swarm optimization[J]. Journal of System Simulation, 2012, 24(2):482-492. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xtfz201202044&dbname=CJFD&dbcode=CJFQ
|
[21] |
吕俊燕, 朱春梅, 赵川.基于小波系数的流形降维抽油机故障特征提取[J].北京信息科技大学学报:自然科学版, 2015, 30(5):24-29. http://www.cnki.com.cn/Journal/C-C2-BJGY-2015-05.htm
Lv J Y, Zhu C M, Zhao C. Fault feature extraction based on wavelet coefficients for manifold dimension reduction of pumping unit[J]. Journal of Beijing Information Science & Technology University, 2015, 30(5):24-29. http://www.cnki.com.cn/Journal/C-C2-BJGY-2015-05.htm
|
[22] |
Wang Z Y, Chen J, Dong G M, et al. Constrained independent component analysis and its application to machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25(7):2501-2512. doi: 10.1016/j.ymssp.2011.03.006
|