Citation: | LU Chao, YANG Cuili, QIAO Junfei. Soft-computing Method for Ammonia Nitrogen Prediction Based on Spiking Self-organizing RBF Neural Network[J]. INFORMATION AND CONTROL, 2017, 46(6): 752-758. DOI: 10.13976/j.cnki.xk.2017.0752 |
In order to solve the problem of ammonia nitrogen online detection in wastewater treatment process, we propose a soft-computing method based on spiking self-organizing RBF neural network. Firstly, we select the auxiliary variables which have a great influence on the prediction of ammonia nitrogen. Secondly, we use the SSORBF neural network to establish the nonlinear relationship between main variables and predicted variables. Secondly, we take the spike mechanism and gradient descent algorithm to adjust the network structure and parameters. Finally, we apply the method to measuring the effluent NH4-N concentration in a real wastewater treatment process. Simulation results show that this method can effectively realize the online prediction of ammonia nitrogen concentration, improve the prediction accuracy and adaptive ability.
[1] |
Amini M, Younesi H, Lorestani A A Z, et al. Determination of optimum conditions for dairy wastewater treatment in UAASB reactor for removal of nutrients[J]. Bioresource Technology, 2013, 145(10):71-79. http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_PM23433977
|
[2] |
Strokal M, Yang H, Zhang Y, et al. Increasing eutrophication in the coastal seas of China from 1970 to 2050[J]. Marine Pollution Bulletin, 2014, 85(1):123-140. doi: 10.1016/j.marpolbul.2014.06.011
|
[3] |
Du R, Peng Y Z, Cao S, et al, Advanced nitrogen removal from wastewater by combining anammox with partial denitrification[J]. Bioresource Technology, 2015, (179):497-504. https://www.sciencedirect.com/science/article/pii/S096085241401788X
|
[4] |
王文萍, 郭周芳, 尚伟伟, 等.水中氨氮的测定方法[J].水科学与工程技术, 2012, 3:26-28. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hbsd201203013&dbname=CJFD&dbcode=CJFQ
Wang W P, Guo Z F, Shang W W, et al. Determination methods summary of ammonia nitrogen in water[J]. Water Sciences and Engineering Technology, 2012, 3:26-28. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hbsd201203013&dbname=CJFD&dbcode=CJFQ
|
[5] |
De Canete J F, Del S P, Baratti R, et al. A soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network[J]. Expert Systems with Applications, 2016, 63:8-19. doi: 10.1016/j.eswa.2016.06.028
|
[6] |
陈静, 徐滋秋, 付万年, 等.电导法氨氮自动连续监测仪的设计与研究[J].仪表技术, 2010, 12:39-41. http://www.cqvip.com/QK/92900X/201012/36183118.html
Chen J, Xu Z Q, Fu W N, et al. Design and study on conductometry ammonia on-line and continuous monitoring detector[J]. Instrumentation Technology, 2010, 12:39-41. http://www.cqvip.com/QK/92900X/201012/36183118.html
|
[7] |
Qiu Y, Liu Y, Huang D. Date-driven soft-Sensor design for biological wastewater treatment using deep neural networks and genetic algorithms[J]. Journal of Chemical Engineering of Japan, 2016, 49(10):925-936. doi: 10.1252/jcej.16we016
|
[8] |
Haimi H, Mulas M, Corona F, et al. Data-derived soft-sensors for biological wastewater treatment plants:An overview[J]. Environmental Modelling and Software, 2013, 47:88-107. doi: 10.1016/j.envsoft.2013.05.009
|
[9] |
Luo S. Comparison between four automatic on-line monitoring instrument and laboratorial national standard method to determine ammonia-nitrogen in water[J]. Environmental Monitoring in China, 2010, 26(3):32-35. http://d.wanfangdata.com.cn/Periodical/zghjjc201003009
|
[10] |
Hanbay D, Turkoglu I, Demir Y. Prediction of chemical oxygen demand (COD) based on wavelet decomposition and neural networks[J]. Clean-Soil Air Water, 2007, 35(3):250-254. doi: 10.1002/(ISSN)1863-0650
|
[11] |
Choi D J, Park H. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process[J]. Water Research, 2001, 35(16):3959-3967. doi: 10.1016/S0043-1354(01)00134-8
|
[12] |
杨琴, 谢淑云. BP神经网络在洞庭湖氨氮预测中的应用[J].水资源与水工程学报, 2006, 17(12):65-67. http://www.cqvip.com/qk/97015A/200601/20913993.html
Yang Q, Xie S Y. Application of BP neural network into predicting NH3-N concentration of dong ting lake[J]. Journal of Water Resources and Water Engineering, 2006, 17(12):65-67. http://www.cqvip.com/qk/97015A/200601/20913993.html
|
[13] |
Deng C, Kong D, Song Y, et al. A soft-sensing approach to on-line predicting ammonia-nitrogen based on RBF neural networks[C]//Second International Conference on Embedded Software and Systems. Piscataway, NJ, USA:IEEE, 2009:454-458. http://ieeexplore.ieee.org/document/5066683/
|
[14] |
Ráduly B, Gernaey K V, Capodaglio A G, et al. Artificial neural networks for rapid WWTP performance evaluation:Methodology and case study[J]. Environmental Modelling & Software, 2007, 22(8):1208-1216. http://dl.acm.org/citation.cfm?id=1235989
|
[15] |
Morchid M, Dufour R, Bousquet P M, et al. Feature selection using principal component analysis for massive retweet detection[J]. Pattern Recognition Letters, 2014, 49:33-39. doi: 10.1016/j.patrec.2014.05.020
|
[16] |
Bachtiar L R, Unsworth C P, Newcomb R D, et al. Multilayer perceptron classification of unknown volatile chemicals from the firing rates of insect olfactory sensory neurons and its application to biosensor design[J]. Neural computation, 2013, 25(1):259-287. doi: 10.1162/NECO_a_00386
|
[17] |
Han H G, Wang L D, Qiao J F, et al. A spiking-based mechanism for self-organizing RBF neural networks[C]//International Joint Conference on Neural Networks. Piscataway, NJ, USA:IEEE, 2014:3775-3782. http://ieeexplore.ieee.org/document/6889473/
|
[18] |
Wu S Q, Er M J, and Gao Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks[J]. IEEE Transaction on Fuzzy Systems, 2001, 9(4):578-594. doi: 10.1109/91.940970
|
[19] |
Li S Y, Chen Q, Huang G B. Dynamic temperature modeling of continuous annealing furnace using GGAP-RBF neural network[J]. Neurocomputing, 2006, 69(4/5/6):523-536. https://www.sciencedirect.com/science/article/pii/S0925231205001050
|
[20] |
乔俊飞, 安茹, 韩红桂.基于RBF神经网络的出水氨氮预测研究[J].控制工程, 2016, 23(9):1301-1305. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jzdf201609002&dbname=CJFD&dbcode=CJFQ
Qiao J F, An R, Han H G. Water ammonia nitrogen prediction research based on RBF neural network[J]. Control Engineering of China, 2016, 23(9):1301-1305. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jzdf201609002&dbname=CJFD&dbcode=CJFQ
|
[1] | YU Qing, HE Jianjun. Temperature Soft Sensor Method for Molded Aging Ovens[J]. INFORMATION AND CONTROL, 2017, 46(3): 328-334. DOI: 10.13976/j.cnki.xk.2017.0328 |
[2] | LI Jun, HUANG Jie. Prediction of Network Traffic Using Local Auto-regressive Methods Based on Self-organizing Map Neural Network[J]. INFORMATION AND CONTROL, 2016, 45(1): 120-128. DOI: 10.13976/j.cnki.xk.2016.0120 |
[3] | LIU Ruilan, RONG Zhou. A Soft Sensor for 4-CBA Concentration in Industrial PX Oxidation Processes[J]. INFORMATION AND CONTROL, 2014, 43(3): 339-343. DOI: 10.3724/SP.J.1219.2014.00339 |
[4] | CAO Wei-hua, CHEN Tai-ren, WU Min, LEI Qi. An Error-Forecasting-Based Soft-Sensing Model for Coke Oven Flue Temperature[J]. INFORMATION AND CONTROL, 2009, 38(2): 206-210. |
[5] | LI Chun-fu, WANG Gui-zeng, YE Hao. Orthogonal Signal Correction and Its Application to Soft Sensing[J]. INFORMATION AND CONTROL, 2004, 33(4): 500-503,507. |
[6] | MA Yong, HUANG De-xian, JIN Yi-hui. Soft-sensor Modeling Method Based on Support Vector Machine[J]. INFORMATION AND CONTROL, 2004, 33(4): 417-421. |
[7] | CHENG Zhi-qiang, DAI Lian-kui, SUN You-xian. Soft Sensor and Internal Model Control of Heating Furnace Thermal Efficiency[J]. INFORMATION AND CONTROL, 2004, 33(1): 85-88. |
[8] | CHENG Zhi-qiang, DAI Lian-kui, SUN You-xian. Soft Sensor and Internal Model Control of Heating Furnace Thermal Efficiency[J]. INFORMATION AND CONTROL, 2004, 33(1): 85-88. |
[9] | LIU Rui-lan, SU Hong-ye, CHU Jian. A SOFT SENSOR MODELING ALGORITHM BASED ON MODIFIED FUZZY NEURAL NETWORK[J]. INFORMATION AND CONTROL, 2003, 32(4): 367-370. |
[10] | FENG Rui, ZHANG Hao-ran, SHAO Hui-he. SOFT SENSOR MODELING BASED ON SUPPORT VECTOR MACHINE[J]. INFORMATION AND CONTROL, 2002, 31(6): 567-571. |