LU Chunhong, WANG Jiehua, WEN Wanzhi. Nonlocality-constrained Locality Sparse Preserving Projections and Its Application to Fault Detection[J]. INFORMATION AND CONTROL, 2019, 48(1): 123-128. DOI: 10.13976/j.cnki.xk.2019.7631
Citation: LU Chunhong, WANG Jiehua, WEN Wanzhi. Nonlocality-constrained Locality Sparse Preserving Projections and Its Application to Fault Detection[J]. INFORMATION AND CONTROL, 2019, 48(1): 123-128. DOI: 10.13976/j.cnki.xk.2019.7631

Nonlocality-constrained Locality Sparse Preserving Projections and Its Application to Fault Detection

More Information
  • Received Date: November 21, 2017
  • Revised Date: May 01, 2018
  • Accepted Date: March 19, 2018
  • Available Online: December 01, 2022
  • Published Date: February 19, 2019
  • Locality preserving projections, which preserve the neighborhood relationship of data, has been successfully applied in process monitoring. However, these methods neglect non-locality structure information and cannot guarantee the relationship of samples faraway. Locality preserving sparse modeling proposed recently use sparse coding to get a set of overcomplete basis, and well-represented inherent structural features from the raw data. Owing to sparse coding for learning local sparse structure features and representing raw data appropriately, we propose non-locality-constrained locality sparse preserving projections. First, we extract the sparse code and represent the global structure information by using sparse coding; second, we preserve the locality structure characteristics with non-locality relationship constraint, and estimate the probability densities of different sparse codes, which are set up with different weighting values to evaluate their contribution to faults; then, we build a combined statistical index for fault detection based on process status; Finally, we validate the proposed method using a numerical study and the Tennessee Eastman benchmark process, and compare it with several models. The monitoring results indicate its superior performance.

  • [1]
    Yin S, Ding S X, Xie X, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6418-6428. doi: 10.1109/TIE.2014.2301773
    [2]
    Riera G M, Antonino D J, Capolino G A. Advances in electrical machine, power electronic, and drive condition monitoring and fault detection:State of the art[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1746-1759. doi: 10.1109/TIE.2014.2375853
    [3]
    Jiang Q, Yan X, Tong C D. Double-weighted independent component analysis for non-Gaussian chemical process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(40):14396-14405. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f91a96202ccd0fd099cdb12c8adecd6
    [4]
    韩敏, 张占奎.基于加权核独立成分分析的故障检测方法[J].控制与决策, 2016, 31(2):242-248. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201602006

    Han M, Zhang Z K. Fault detection method based on weighted kernel independent component analysis[J]. Control and Decision, 2016, 31(2):242-248. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201602006
    [5]
    王光, 孙程远, 尹珅.基于动态全主成分回归质量相关的故障检测[J].信息与控制, 2017, 46(6):671-676. http://ic.sia.cn/CN/abstract/abstract12589.shtml

    Wang G, Sun C Y, Yin K. Quality-related fault detection approach based on dynamic total principal component regression component regression[J]. Information and Control, 2017, 46(6):671-676. http://ic.sia.cn/CN/abstract/abstract12589.shtml
    [6]
    曲星宇, 曾鹏, 李俊鹏.基于局部权重角度离群算法的球磨机故障诊断[J].信息与控制, 2017, 46(4):489-494. http://ic.sia.cn/CN/abstract/abstract12560.shtml

    Qu X Y, Zeng P, Li J P. Fault diagnosis of ball mill based on LW-fast VOA algorithm[J]. Information and Control, 2017, 46(4):489-494. http://ic.sia.cn/CN/abstract/abstract12560.shtml
    [7]
    杨泽宇, 王培良.基于核独立成分分析和支持向量数据描述的非线性系统故障检测方法[J].信息与控制, 2017, 46(2):153-158. http://ic.sia.cn/CN/abstract/abstract12510.shtml

    Yang Z Y, Wang P L. Fault detection method for non-linear systems based on kernel independent component analysis and support vector data description[J]. Information and Control, 2017, 46(2):153-158. http://ic.sia.cn/CN/abstract/abstract12510.shtml
    [8]
    王姝, 常玉清, 杨洁, 等.时段划分的多向主元分析间歇过程监测及故障变量追溯[J].控制理论与应用, 2011, 28(2):149-156. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201102003

    Wang S, Chang Y Q, Yang J, et al. Multiway principle component analysis monitoring and fault variable detection based on substage separation for batch processes[J]. Control Theory & Applications, 2011, 28(2):149-156. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201102003
    [9]
    郭金玉, 齐蕾蕾, 李元.基于DMOLPP的间歇过程在线故障检测[J].仪器仪表学报, 2015, 36(1):134-142. http://d.old.wanfangdata.com.cn/Periodical/yqyb201501017

    Guo J Y, Qi L L, Li Y. On-line fault detection of batch process based on DMOLPP[J]. Chinese Journal of Scientific Instrument, 2015, 36(1):134-142. http://d.old.wanfangdata.com.cn/Periodical/yqyb201501017
    [10]
    He F, Xu J. A novel process monitoring and fault detection approach based on statistics locality preserving projections[J]. Journal of Process Control, 2016, 37:46-57. doi: 10.1016/j.jprocont.2015.11.004
    [11]
    Deng J, Zhang Z X, Marchi E, et al. Sparse autoencoder based feature transfer learning for speech emotion recognition[C]//2013 Humaine Association Conference Affective Computing Intelligent Interaction. Piscataway, NJ, USA: IEEE, 2013: 511-516.
    [12]
    Peng X, Tang Y, Du W, et al. Multimode process monitoring and fault detection:A sparse modeling and dictionary learning method[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6):4866-4875. doi: 10.1109/TIE.2017.2668987
    [13]
    Miao A M, Ge Z Q, Song Z H, et al. Nonlocal structure constrained neighborhood preserving embedding model and its application for fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 142:184-196. doi: 10.1016/j.chemolab.2015.01.010
    [14]
    Ma Y X, Song B, Shi H B, et al. Fault detection via local and nonlocal embedding[J]. Chemical Engineering Research and Design, 2015, 94:538-548. doi: 10.1016/j.cherd.2014.09.015
    [15]
    Yu J B. Process monitoring through manifold regularization-based GMM with global/local information[J]. Journal of Process Control, 2016, 45:84-99. doi: 10.1016/j.jprocont.2016.07.006
    [16]
    Zheng M, Bu J, Chen C, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing, 2011, 20(5):1327-1336. doi: 10.1109/TIP.2010.2090535
    [17]
    Yang W, Sun C, Zheng W. A regularized least square based discriminative projections for feature extraction[J]. Neurocomputing, 2016, 175:198-205. doi: 10.1016/j.neucom.2015.10.049
    [18]
    Parzen E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3):1065-1076. doi: 10.1214/aoms/1177704472
    [19]
    Ku W, Sstorer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):179-196. doi: 10.1016/0169-7439(95)00076-3
    [20]
    Downs J J, Vogelef E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255. doi: 10.1016-0098-1354(93)80018-I/

Catalog

    Article views (406) PDF downloads (92) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return