TAO Hongfeng, LIU Wei, YANG Huizhong. Iterative Feedback Tuning Control and Optimization of Pneumatic Muscle Actuators[J]. INFORMATION AND CONTROL, 2019, 48(5): 573-579. DOI: 10.13976/j.cnki.xk.2019.8513
Citation: TAO Hongfeng, LIU Wei, YANG Huizhong. Iterative Feedback Tuning Control and Optimization of Pneumatic Muscle Actuators[J]. INFORMATION AND CONTROL, 2019, 48(5): 573-579. DOI: 10.13976/j.cnki.xk.2019.8513

Iterative Feedback Tuning Control and Optimization of Pneumatic Muscle Actuators

More Information
  • Received Date: October 21, 2018
  • Revised Date: February 27, 2019
  • Accepted Date: January 09, 2019
  • Available Online: December 01, 2022
  • Published Date: October 19, 2019
  • Pneumatic muscle actuators (PMA)have advantages such as low costs, flexibility, and mechanical properties similar to those of biological muscles, and these advantages make them widely used as equipment in many fields such as medicine and bionic robotics. Considering the problem of highly nonlinear and time-varying features and the difficulty in determining the control parameters, this paper presents a data-driven optimal control method based on iterative feedback tuning (IFT). Based on the input and output data, the method applies the Gauss-Newton approximation algorithm to iteratively tune PID parameters by defining the tracking performance criterion function, and the optimal value of the weighting factor is obtained by introducing an auxiliary factor to further speed up the convergence of the IFT algorithm. The simulation results show that this method can effectively improve the tracking performance and system robustness, compared with the traditional PID parameter tuning method such as Ziegler-Nichols tuning method.

  • [1]
    谢胜龙, 梅江平, 刘海涛. McKibben型气动人工肌肉研究进展与趋势[J].计算机集成制造系统, 2018, 24(5):1065-1080. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201805001

    Xie S L, Mei J P, Liu H T. Achievements and trends of research on McKibben pneumatic artificial muscles[J]. Computer Integrated Manufacturing Systems, 2018, 24(5):1065-1080. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201805001
    [2]
    朱雪峰, 王建辉, 王晓峰.基于人工免疫算法的滚动优化在康复机器人中的应用研究[J].信息与控制, 2017, 46(3):335-341. http://ic.sia.cn/CN/abstract/abstract12538.shtml

    Zhu X F, Wang J H, Wang X F. Application of the rolling optimization based on artificial immune algorithm to rehabilitation robot[J]. Information and Control, 2017, 46(3):335-341. http://ic.sia.cn/CN/abstract/abstract12538.shtml
    [3]
    Tondu B. Modelling of the McKibben artificial muscle:A review[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(3):225-253. doi: 10.1177/1045389X11435435
    [4]
    Kelasidi E, Andrikopoulos G, Nikolakopoulos G, et al. A survey on pneumatic muscle actuators modeling[C]//Proceedings of 2011 IEEE International Symposium on Industrial Electronics. Piscataway, NJ, USA: IEEE, 2011: 1263-1269. https://www.researchgate.net/publication/259310435_A_survey_on_pneumatic_muscle_actuators_modeling
    [5]
    Hjalmarsson H, Gevers M, Gunnarsson S, et al. Iterative feedback tuning:theory and applications[J]. IEEE Control Systems Magazine, 1998, 18(4):26-41. doi: 10.1109/37.710876
    [6]
    Lequin O, Gevers M, Mossberg M, et al. Iterative feedback tuning of PID parameters:Comparison with classical tuning rules[J]. Control Engineering Practice, 2003, 11(9):1023-1033. doi: 10.1016/S0967-0661(02)00303-9
    [7]
    Radac M B, Precup R E, Preitl S, et al. Iterative feedback tuning in MIMO systems. Signal processing and application[C]//5th International Symposium on Applied Computational Intelligence and Informatics. Piscataway, NJ, USA: IEEE, 2009: 77-82. https://www.researchgate.net/publication/221172814_Iterative_Feedback_Tuning_in_MIMO_Systems_Signal_Processing_and_Application
    [8]
    Tesch D, Eckhard D, Bazanella A S. Iterative feedback tuning for cascade systems[C]//2016 European Control Conference (ECC). Piscataway, NJ, USA: IEEE, 2016: 495-500. https://www.researchgate.net/publication/312326497_Iterative_feedback_tuning_for_cascade_systems
    [9]
    Tondu B, Ippolito S, Guiochet J, et al. A seven-degrees-of-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots[J]. The International Journal of Robotics Research, 2005, 24(4):257-274. doi: 10.1039-c0cc01535k/
    [10]
    张宏立, 申珉珉, 彭光正.气动人工肌肉静态数学模型与实验研究[J].液压与气动, 2009(4):17-19. doi: 10.3969/j.issn.1000-4858.2009.04.008

    Zhang H L, Shen M M, Peng G Z. Static mathematical model and experimental study of pneumatic muscle actuator[J]. Chinese Hydraulics & Pneumatics, 2009(4):17-19. doi: 10.3969/j.issn.1000-4858.2009.04.008
    [11]
    Minh T V, Tjahjowidodo T, Ramon H, et al. Cascade position control of a single pneumatic artificial muscle-mass system with hysteresis compensation[J]. Mechatronics, 2010, 20(3):402-414. doi: 10.1016/j.mechatronics.2010.03.001
    [12]
    谢建蔚, 陶国良, 周洪.气动人工肌肉关节的建模与仿真[J].浙江大学学报(工学版), 2007(3):450-455. doi: 10.3785/j.issn.1008-973X.2007.03.017

    Xie J W, Tao G L, Zhou H. Modelling and simulation of joint actuated by pneumatic muscles[J]. Journal of Zhejiang University (Engineering Science), 2007(3):450-455. doi: 10.3785/j.issn.1008-973X.2007.03.017
    [13]
    Najjari B, Barakati S M, Mohammadi A, et al. Modelling and controller design of electro-pneumatic actuator based on PWM[J]. IAES International Journal of Robotics and Automation, 2012, 1(3):125. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_2fd253a753ae922bac82109366b49b65
    [14]
    Erkaya S, Uzmay I. Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism[J]. Multibody System Dynamics, 2010, 24(1):81-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3dcb130009f9943189f41570fc56ed3
    [15]
    Pan H, Zhang Y, Wang L. Iterative feedback tuning for two-degree-of-freedom system[M]. Berlin, Germany:Springer, 2018:365-379.
    [16]
    Kora K, Lu C Z, McDaid A J. Automatic tuning with feedforward compensation of the HuREx rehabilitation system[C]//2014 IEEE/ASME International Conference. Piscataway, NJ, USA: IEEE, 2014: 1504-1509. https://www.researchgate.net/publication/271484085_Automatic_tuning_with_feedforward_compensation_of_the_HuREx_rehabilitation_system
    [17]
    Meng W, Xie S Q, Liu Q, et al. Robust iterative feedback tuning control of a compliant rehabilitation robot for repetitive ankle training[J]. IEEE-ASME Transactions on Mechatronics, 2017, 22(22):173-184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=18f5b0b7ec657bbcd86da7cc4eda72c2
    [18]
    Heertjes M F, Van der Velden B, Oomen T. Constrained iterative feedback tuning for robust control of a wafer stage system[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1):56-66. doi: 10.1109/TCST.2015.2418311
    [19]
    Lu C Z, Xie S Q, Deng C. Optimal normalized weighting factor in iterative feedback tuning of step input responses[J]. IFAC Proceedings Volumes, 2017, 22(22):173-184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214921151
    [20]
    Rădac M B, Precup R E, Petriu E M, et al. Data-driven reference trajectory tracking algorithm and experimental validation[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4):2327-2336. doi: 10.1109/TII.2012.2220973
    [21]
    Huusom J K, Poulsen N K, Jørgensen S B. Improving convergence of iterative feedback tuning[J]. Journal of Process Control, 2009, 19(4):570-578. doi: 10.1016/j.jprocont.2008.09.004
    [22]
    Hjalmarsson H. Iterative feedback tuning-an overview[J]. International Journal of Adaptive Control and Signal Processing, 2002, 16(5):373-395. doi: 10.1002/acs.714
  • Cited by

    Periodical cited type(3)

    1. 杜星瀚,曹轩玮,刘奇. 一阶纯滞后系统的改进Smith-IFT控制. 制造业自动化. 2025(02): 19-26 .
    2. 陈宗遥,卜旭辉,崔立志,余威,郭金丽. 数据驱动的负荷频率系统自整定控制器设计. 控制工程. 2023(02): 238-244 .
    3. 常振强,金龙,李帅,张继良. 微型扑翼飞行器的自适应位置跟踪控制器. 信息与控制. 2021(01): 88-94 . 本站查看

    Other cited types(5)

Catalog

    Article views (204) PDF downloads (58) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return