Citation: | JI Xunsheng, WANG Dazhi. Application of the Positive and Negative Double Hypersphere Model to Elevator Fault Diagnosis[J]. INFORMATION AND CONTROL, 2020, 49(3): 377-384. DOI: 10.13976/j.cnki.xk.2020.9283 |
On the basis of the distribution characteristics of elevator data in high-dimensional space, an elevator fault detection and diagnosis model, which was based on the description of positive and negative double hypersphere support vector data, was proposed. The real-time elevator data were divided into healthy samples, faulty samples, and unknown drift anomalies. Support vector data description (SVDD) was used to improve the discrimination accuracy of unknown drift anomalies caused by aging of elevator equipment. SVDD was combined with the convex bilevel quadratic programming method to form a bilevel SVDD. First, the method implemented the convex interval processing of elevator operation data. The sphere and radius of hyperspheres were updated through five iterations. Then, the distance of the data to the positive or negative hyperspheres was calculated to discriminate the category of the unknown drift anomalies. In addition, the models were stacked to divide the faulty sample space to diagnose four common elevator faults. The experimental results show that the discrimination of unknown drift anomalies can reach 98. 3% of the average classification accuracy, which confirms that the proposed method can rapidly and effectively diagnose elevator faults.
[1] |
Cai N, Chow W K. Numerical studies on fire hazards of elevator evacuation in supertall buildings[J]. Indoor and Built Environment, 2019, 28(2):247-263. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1420326X17751593
|
[2] |
Wen P G, Zhi M, Zhang G Y, et al. Fault prediction of elevator door system based on PSO-BP neural network[J]. Engineering, 2016, 8(11):761-766. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4236/eng.2016.811068
|
[3] |
Liu J, Gong Z H, Bai Z L, et al. Analysis of elevator motor fault detection based on chaotic theory[J]. Journal of Information and Computational Science, 2014, 11(1):229-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84b336d7359cb1c474b1cb5155e79fca
|
[4] |
朱明, 王志荣, 郭文杰, 等.电梯故障率预测模型及其应用[J].中国安全科学学报, 2017, 27(9):74-78. http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201709013
Zhu M, Wang Z R, Guo W J, et al. Research on model for elevator failure rate prediction and its application[J]. China Safety Science Journal, 2017, 27(9):74-78. http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201709013
|
[5] |
陶然, 许有才, 邓方华, 等.基于SVD优化LMD的电梯导靴振动信号故障特征提取[J].振动与冲击, 2017, 36(22):166-171. http://d.old.wanfangdata.com.cn/Periodical/zdycj201722026
Tao R, Xu Y C, Deng F H, et al. Feature extraction of an elevator guide shoe vibration signal based on SVD optimizing LMD[J]. Journal of Vibration and Shock, 2017, 36(22):166-171. http://d.old.wanfangdata.com.cn/Periodical/zdycj201722026
|
[6] |
陈志平, 汪赞, 张国安, 等.基于大数据的电梯故障诊断与预测研究[J].机电工程, 2019, 36(1):90-94. http://d.old.wanfangdata.com.cn/Periodical/jdgc201901018
Chen Z P, Wang Z, Zhang G A, et al. Research of big-data-based elevator fault diagnosis and predication[J]. Mechanical & Electrical Engineering Magazine, 2019, 36(1):90-94. http://d.old.wanfangdata.com.cn/Periodical/jdgc201901018
|
[7] |
Wang C, Zhang R J, Zhang Q. Analysis of transverse vibration acceleration for a high-speed elevator with random parameter based on perturbation theory[J]. International Journal of Acoustics and Vibration, 2017, 22(2):218-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e0dcf8753463dc934cf3d7ea27a5459
|
[8] |
Ainil S, Garniwa M, Ridwan G, et al. Fuzzy-PID simulation on current performance for Modern Elevator[C]//6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE). Piscataway, NJ, USA: IEEE, 2016: 403-406.
|
[9] |
Royo J, Segui R, Pardina A, et al. Machine current signature analysis as a way for fault detection in permanent magnet motors in elevators[C]//18th International Conference on Electrical Machines. Piscataway, NJ, USA: IEEE, 2008: 1-6.
|
[10] |
Li Z, Yan F, Li G M. Research on SVM multi-classification based on particle swarm algorithm[C]//2018 International Symposium on Computer, Consumer and Control (IS3C). Piscataway, NJ, USA: IEEE, 2018: 270-273.
|
[11] |
Gao J C, Zhu Y L, Jia Y F. Pattern recognition of unknown partial discharge based on improved SVDD[J]. IET Science, Measurement & Technology, 2018, 12(7):907-916. http://d.old.wanfangdata.com.cn/Periodical/dgjsxb201815009
|
[12] |
Resendiz F, Edgar O, Navarro A, et al. Fault detection and optimal feature selection in automobile motor-head machining process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5/8):2613-2622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f147720f5de57334c643f6f22792de9
|
[13] |
Mei F, Zheng J Y, Zhu K D. Adaptive fault diagnosis of HVCBs based on P-SVDD and P-KFCM[J]. Neurocomputing, 2017, 240(1):127-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa25603b02f1b297565f4c08d62d3083
|
[14] |
Onoda T, Kiuchi M. Analysis of intrusion detection in control system communication based on outlier detection with one-class classifiers[J]. Scis & Isis, 2012, 12(1):111-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0213284371
|
[15] |
Zhang C F, Ni M, Yin H M, et al. Developed density peak clustering with support vector data description for access network intrusion detection[J]. IEEE Access, 2018, 6:46356-46362. http://cn.bing.com/academic/profile?id=554c755da255c3e9f8fb7f368a17688f&encoded=0&v=paper_preview&mkt=zh-cn
|
[16] |
Nguyen T V, Tran N T, Le T S. A Combination of Temporal sequence learning and data description for anomaly-based NIDS[J]. International Journal of Network Security & Its Applications (IJNSA), 2019, 11(3):1184-1199. http://cn.bing.com/academic/profile?id=2a1bfaf218d431bc279cde483c962e64&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
Gong R F, Wu C D, Chu M X. Multi-class classification method based on support vector machine with hyper-sphere for steel surface defects[C]//2018 37th Chinese Control Conference (CCC). Piscataway, NJ, USA: IEEE, 2018: 9197-9202.
|
[18] |
Wang F, Lin W G, Liu Z, et al. Pipeline leak detection by using time-domain statistical features[J]. IEEE Sensors Journal, 2017, 17(19):6431-3442. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=628bc87910b3ab84a8291ddc613c1145
|
[19] |
Nico G, Luiz A L, Klaus R M, et al. Support vector data descriptions and k-means clustering:One class[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9):3994-4006. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3afbd0d30ca48b063af643e1c0386574
|
[20] |
党帅涛, 柯坚, 吴文海, 等.一种双超球数据域描述模型[J].传感器与微系统, 2019, 38(01):41-43. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201901012
Dang S T, Ke J, Wu W H, et al. A data domain description model using double hypersphere[J]. Transducer and Microsystem Technologies, 2019, 38(1):41-43. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201901012
|
[21] |
魏振伟, 刘飞.粒子群特征优选的SVDD入侵检测研究[J].微电子学与计算机, 2016, 33(8):144-148. http://d.old.wanfangdata.com.cn/Periodical/wdzxyjsj201608031
Wei Z W, Liu F. Research of network intrusion detection based on particle swarm optimization and support vector data description[J]. Microelectronics and Computer, 2016, 33(8):144-148. http://d.old.wanfangdata.com.cn/Periodical/wdzxyjsj201608031
|
[22] |
李丹阳, 蔡金燕, 杜敏杰, 等.基于改进SMO的SVDD快速训练算法[J].中国测试, 2015, 41(11):101-105. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201511023
Li D Y, Cai J Y, Du M J, et al. SVDD fast training algorithm based on improved SMO[J]. China Measurement & Testing Technology, 2015, 41(11):101-105. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201511023
|
[23] |
Cheong H P. Anomaly pattern detection on data streams[C]//2018 IEEE International Conference on Big Data and Smart Computing. Piscataway, NJ, USA: IEEE, 2018: 689-692.
|
[24] |
Adasme P, Lisser A. A computational study for bilevel quadratic programs using semidefinite relaxations[J]. European Journal of Operational Research, 2016, 254(1):9-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=916898fd24edc57631ec2f502b644445
|
[25] |
Oberdieck R, Diangelakis N A, Avraamidou S, et al. On unbounded and binary parameters in multi-parametric programming:applications to mixed-integer bilevel optimization and duality theory[J]. Journal of Global Optimization, 2017, 69(3):587-606. http://cn.bing.com/academic/profile?id=ce027371abb62079e342577e400d81f4&encoded=0&v=paper_preview&mkt=zh-cn
|