KONG Wen, CHE Quan, ZHAO Huirong, PENG Daogang. Short-term Prediction of Coal Stock in Power Plant Based on Singular Spectrum Analysis and Long Short-term Memory Neural Network[J]. INFORMATION AND CONTROL, 2020, 49(6): 742-751. DOI: 10.13976/j.cnki.xk.2020.9484
Citation: KONG Wen, CHE Quan, ZHAO Huirong, PENG Daogang. Short-term Prediction of Coal Stock in Power Plant Based on Singular Spectrum Analysis and Long Short-term Memory Neural Network[J]. INFORMATION AND CONTROL, 2020, 49(6): 742-751. DOI: 10.13976/j.cnki.xk.2020.9484

Short-term Prediction of Coal Stock in Power Plant Based on Singular Spectrum Analysis and Long Short-term Memory Neural Network

More Information
  • Received Date: September 01, 2019
  • Revised Date: April 14, 2020
  • Accepted Date: November 05, 2019
  • Available Online: December 01, 2022
  • Published Date: December 19, 2020
  • In view of the low accuracy of coal storage predict, ion in thermal power plants, we propose a multi-variable and multi-step prediction model based on singular spectrum analysis (SSA) and long short-term memory (LSTM) neural network. Considering the influence of historical data and temperature of power plant, we use singular spectrum analysis or wavelet analysis to smooth the data, remove the noise components from the data, and use it as the input vectors of LSTM neural network for simulation test. The results show that compared with the combination of back propagation (BP) neural network, recurrent neural network, wavelet analysis and LSTM, the multi variable and multi-step prediction model based on singular spectrum analysis and long short time memory neural network adopted has higher accuracy.

  • [1]
    程宇也.基于人工神经网络的短期电力负荷预测研究[D].杭州: 浙江大学, 2017.

    Cheng Y Y. Short-term electricity demand forecasting based on artificial neural network[D]. Hangzhou: Zhejiang University, 2017.
    [2]
    袁帅.电煤存储裕度预警系统研究及应用[D].武汉: 华中科技大学, 2012.

    Yuan S. Research on coal storage margin early warning system and its application[D]. Wuhan: Huazhong University of Science and Technology, 2012.
    [3]
    中国人民共和国国务院.电网调度管理条例[S].北京: 中国人民共和国国务院, 2011.

    State Council of the People's Republic of China. Regulations on power grid dispatching management[S]. Beijing: State Council of the People's Republic of China, 2011.
    [4]
    王剑波, 于贺, 张琳, 等.基于存煤量的火电厂发电能力预测[J].黑龙江电力, 2014, 36(3):278-282. doi: 10.3969/j.issn.1002-1663.2014.03.022

    Wang J B, Yu H, Zhang L, et al. Generation capacity prediction for thermal power plant based on coal load[J]. Heilongjiang Electric Power, 2014, 36(3):278-282. doi: 10.3969/j.issn.1002-1663.2014.03.022
    [5]
    马姗姗.发电企业燃煤库存管理优化研究[D].保定: 华北电力大学, 2014.

    Ma S S. Research on the optimization of coal inventory of powerplants[D]. Baoding: North China Electric Power University, 2014.
    [6]
    梁万华.电煤供应链库存与运输联合优化研究[D].保定: 华北电力大学, 2013.

    Liang W H. Study on inventory and transportation integrated optimization for electricity coal supply chain[D]. Baoding: North China Electric Power University, 2013.
    [7]
    徐尧强, 方乐恒, 赵东华, 等.基于LSTM神经网络的用电量预测[J].电网技术, 2017, 20(8):25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDJ201708013.htm

    Xu R Q, Fang L H, Zhao D H, et al. Electricity consumption prediction based on LSTM neural networks[J]. Power System Technology, 2017, 20(8):25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDJ201708013.htm
    [8]
    陈卓, 孙龙祥.基于深度学习LSTM网络的短期电力负荷预测算法[J].电子技术, 2018, 47(1):39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJS201801011.htm

    Chen Z, Sun L X. Short-term electricalload forecasting based on deep learning LSTM networks[J]. Electronic Technology, 2018, 47(1):39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJS201801011.htm
    [9]
    孙毅, 李世豪, 崔灿, 等.基于高斯核函数改进的电力用户用电数据离群点检测方法[J].电网技术, 2018, 42(5):1595-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201805031.htm

    Sun Y, Li S H, Cui C, et al. Improved outlier detection method of power consumer data based on Gaussian kernel function[J]. Power System Technology, 2018, 42(5):1595-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201805031.htm
    [10]
    艾欣, 周志宇, 魏妍萍, 等.基于自回归积分滑动平均模型的可转移负荷竞价策略[J].电力系统自动化, 2017, 41(20):26-31. doi: 10.7500/AEPS20170119009

    Ai X, Zhou Z Y, Wei Y P, et al. Bidding strategy for time-shiftable based on autoregressive integrated moving average model[J]. Automation of Electric Power System, 2017, 41(20):26-31. doi: 10.7500/AEPS20170119009
    [11]
    刘鑫, 滕欢, 宫毓斌, 等.基于改进卡尔曼滤波算法的短期负荷预测[J].电测与仪表, 2019, 56(3):42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201903008.htm

    Liu X, Teng H, Gong Y B, et al. Short-term load forecasting based on the improved Kalman filter algorithm[J]. Electrical Measurement&Instrumentation, 2019, 56(3):42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201903008.htm
    [12]
    苏学能, 刘天琪, 曹鸿谦, 等.基于Hadoop架构的多重分布式BP神经网络的短期负荷预测方法[J].中国电机工程学报, 2017, 37(17):4966-4973. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201717010.htm

    Su X N, Liu T Q, Cao H Q, et al. A multiple distributed BP neural networks approach for short-term load forecasting based on Hadoop framework[J]. Proceedings of the CSEE, 2017, 37(17):4966-4973. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201717010.htm
    [13]
    张冠英, 羡一鸣, 葛磊蛟, 等.经济新常态下基于Verhulst-SVM的中长期负荷预测模型[J].电测与仪表, 2019, 56(1):102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201901017.htm

    Zhang G Y, Xian Y M, Ge L J, et al. Medium and long-term load forecasting model based on Verhulst-SVM under new normal economy[J]. Electrical Measurement&Instrumentation, 2019, 56(1):102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201901017.htm
    [14]
    Anbazhagan S, Kumarappan N. Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT[J]. Energy Conversion & Management, 2014, 78(1):711-719. http://www.sciencedirect.com/science/article/pii/S0196890413007528
    [15]
    Afshar K, Bigdeli N. Data analysis and short term load forecasting in Iran electricity market using singular spectral analysis (SSA)[J]. Energy, 2011, 36(5):2620-2627. doi: 10.1016/j.energy.2011.02.003
    [16]
    Wu C L, Chau K W. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis[J]. Journal of Hydrology (Amsterdam), 2011, 399(3/4):394-409. http://www.sciencedirect.com/science/article/pii/S0022169411000424
    [17]
    温冬琴, 王建东.基于奇异谱分析的机场噪声时间序列预测模型[J].计算机科学, 2014, 41(1):267-270. doi: 10.3969/j.issn.1002-137X.2014.01.051

    Wen D Q, Wang J D. Prediction model for airport-noise time series based on SSA[J]. Computer Science, 2014, 41(1):267-270. doi: 10.3969/j.issn.1002-137X.2014.01.051
    [18]
    Sanei S, Lee T K M, Abolghasemi V. A new adaptive line enhancer based on singular spectrum analysis[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(2):428-434. doi: 10.1109/TBME.2011.2173936
    [19]

    Li X B, Chen Y G, Chen W B, et al. Identification of single-phase grounding fault in distribution networkbased on wavelet and deep learning[J/OL]. Electrical Measurement & Instrumentation.(2019-07-11)[2019-10-06]. https://kns.cnki.net/KCMS/detail/23.1202.TH.20190709.1439.008.html?uid=WEEvREcwSlJHSldRa1FhcEFLUmViSGFpdVVOOTQrVnRYQndvRDMzaEU1Yz0=$9A4hF_YAuvQ5obgVAq-NKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=Mjg1MzQ3bFViektKVlk9SVM3U2Y3RzRIOWpNcUk5TVpPc0tZdzlNem1SbjZqNTd-UM2ZscVdNMENMTDdSN3FkWitackZp.
    [20]
    Hochreiter S, Sehmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [21]
    Graves A. Supervised sequence labelling with recurrent neural networks[D]. Switzerland: Technical University of Munich, 2008.
    [22]
    Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ, USA: IEEE, 2013: 6645-6649.
    [23]
    李鹏, 何帅, 韩鹏飞, 等.基于长短期记忆的实时电价条件下智能电网短期负荷预测[J].电网技术, 2018, 42(15):4045-4052. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201812030.htm

    Li P, He S, Han P F, et al. Short-term load forecasting of smart grid based on long-short-term memory recurrent neural networks in condition of real-time electricityprice[J]. Power System Technology, 2018, 42(15):4045-4052. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201812030.htm
    [24]
    Li X, Wu X. Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition[C]//IEEE International Conference on Acoustic, Speech and Signal Processing. Piscateway, NJ, USA: IEEE, 2015: 4520-4524.
    [25]
    陈晓时.基于小波变换的有效停车泊位多步预测模型[D].南京: 东南大学, 2016.

    Chen X S. Model for multi-step ahead available parking spaces forecasting based on wavelet transform[D]. Nanjing: Southeast University, 2016.
    [26]
    刘增里, 杨静, 刘亚林, 等.基于改进BP神经网络的风电功率超短期预测[J].船舶工程, 2019, 41(S1):282-287. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB2019S1070.htm

    Liu Z L, Yang J, Liu Y L, et al. Ultra shortterm prediction of wind power based on improved BP neural network[J]. Ship Engineering, 2019, 41(S1):282-287. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB2019S1070.htm
    [27]
    王孟连, 梁树甜, 牛璐.最优组合预测方法在船舶电推系统中的应用[J].电机与控制学报, 2015, 19(9):103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201509016.htm

    Wang M L, Liang S T, Niu L. Application of optimal combined forecasting method in marine electric propulsion system[J]. Journal of Electrical Machinery and Control, 2015, 19(9):103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201509016.htm
  • Related Articles

    [1]ZHANG Peixiao, YIN Xiaohong, LI Shaoyuan, WANG Xinli. The Short-term Forecasting of Power Load in Agricultural Greenhouses Based on VMD-CNN-LSTM[J]. INFORMATION AND CONTROL, 2024, 53(2): 238-249. DOI: 10.13976/j.cnki.xk.2024.3021
    [2]SUN Tianbao, LIU Yuanhua. Chaotic Time Series Prediction Based on Fuzzy Information Granulation and Hybrid Neural Network[J]. INFORMATION AND CONTROL, 2022, 51(6): 671-679. DOI: 10.13976/j.cnki.xk.2022.2018
    [3]LIAO Xuechao, CHEN Caisheng, WU Jieping. Combined Spatiotemporal Wind Farm Prediction Model Based on CNN-LSTM and Deep Learning[J]. INFORMATION AND CONTROL, 2022, 51(4): 498-512. DOI: 10.13976/j.cnki.xk.2022.1280
    [4]GAO De-xin, LIU Xin, YANG Qing. Remaining Useful Life Prediction of Lithium-Ion Battery Based on CNN and BiLSTM Fusion[J]. INFORMATION AND CONTROL, 2022, 51(3): 318-329, 360. DOI: 10.13976/j.cnki.xk.2022.1205
    [5]LIAO Xuechao, DENG Wanxiong. Combined Model Based on Two-stage Decomposition and Long-short-term Memory Network for Short-term Wind Speed Multi-step Prediction[J]. INFORMATION AND CONTROL, 2021, 50(4): 470-482. DOI: 10.13976/j.cnki.xk.2021.0302
    [6]LI Limin, ZHANG Mingyue, WEN Zongzhou, GUO Fu, ZHANG Jun, HE Yang. Landslide Displacement Prediction Based on Singular Spectrum Analysis and a Combined Long Short-term Memory Neural Network Model[J]. INFORMATION AND CONTROL, 2021, 50(4): 459-469, 482. DOI: 10.13976/j.cnki.xk.2021.0424
    [7]LIU Huipeng, ZHOU Zhiping. Industrial Control Network Intrusion Detection Based on Hyperparameter Automatic Optimization[J]. INFORMATION AND CONTROL, 2021, 50(4): 427-434. DOI: 10.13976/j.cnki.xk.2021.0368
    [8]JIANG Wan, ZHOU Xiaoyan, XU Huanan, LI Dapeng, AN Haoran. Micro-expression Recognition Based on LBP and Two-stream Spatial-temporal Neural Network[J]. INFORMATION AND CONTROL, 2020, 49(6): 673-679. DOI: 10.13976/j.cnki.xk.2020.2056
    [9]YU Bangbing, WANG Huazhong, YAN Bingyong. Intrusion Detection of Industrial Control System Based on Long Short Term Memory[J]. INFORMATION AND CONTROL, 2018, 47(1): 54-59. DOI: 10.13976/j.cnki.xk.2018.0054
    [10]ZHANG Xiao-li. The Forecasting Approach for Short-term Traffic Flow Based on Wavelet Analysis and Neural Network[J]. INFORMATION AND CONTROL, 2007, 36(4): 467-470,475.
  • Cited by

    Periodical cited type(10)

    1. 熊国玉,祖繁,包云轩,王可心. 基于LSTM和先验知识的高速公路路面温度预报. 应用气象学报. 2024(01): 68-79 .
    2. 张宇晨,姜雪松,刘森,李春伟. 基于改进CEEMDAN的深度学习电煤库存STIFM. 计算机仿真. 2024(06): 167-173+243 .
    3. 连莲,商家硕,宗学军,王国刚. 基于ConvLSTM-GRU的公交客流量预测模型. 控制工程. 2023(06): 1090-1098 .
    4. 谌桢文,常军. SSA-SARIMA组合模型的桥梁健康状态预测. 苏州科技大学学报(工程技术版). 2023(04): 8-12 .
    5. 冯占科,张希武. 基于线性回归算法的煤仓存煤量数据纠偏方法. 工矿自动化. 2023(S2): 161-164 .
    6. 蒋齐嘉,蒋中明,唐栋,曾景明. 基于SSA-DBSCAN的边坡安全监测数据粗差探测方法. 长江科学院院报. 2022(04): 85-90+98 .
    7. 孟巍,郭腾炫,刘昳娟,张东宁,宗振国. 基于长短记忆神经网络优化的短期光伏发电预测方法. 电网与清洁能源. 2022(05): 129-134 .
    8. 郭建军,韩钤钰,董佳琦,周冰,徐龙琴,刘双印. 基于SSA-PSO-LSTM模型的羊舍相对湿度预测技术. 农业机械学报. 2022(09): 365-373+398 .
    9. 彭慧,朱雪靖,周晓锋,李帅,刘舒锐. 基于TVA-TCN的制造过程关键参数多步预测方法. 控制与决策. 2022(12): 3321-3328 .
    10. 李丽敏,张明岳,温宗周,郭伏,张俊,何洋. 基于奇异谱分析法和长短时记忆网络组合模型的滑坡位移预测. 信息与控制. 2021(04): 459-469+482 . 本站查看

    Other cited types(6)

Catalog

    Article views (175) PDF downloads (86) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return