Citation: | JIA Lin, LI Qi, LIANG Dong. Bridge Crack Location Algorithm Based on Improved Fully Convolutional One-stage Detector[J]. INFORMATION AND CONTROL, 2022, 51(3): 369-376. DOI: 10.13976/j.cnki.xk.2022.1221 |
In order to solve the problem of slow locating speed in the process of bridge crack detection, a crack location algorithm based on fully convolutional one-stage(FCOS) detector is proposed. The algorithm uses the FCOS network model framework, uses the lightweight backbone network efficientnet to extract the characteristics of the crack image. And bi-directional feature pyramid network is introduced to fuse the characteristics of different scales of the crack image, thereby enhancing the visual feature extraction effect of the backbone network. Experiments on a self-made data set show that the algorithm can quickly locate bridge cracks. Compared with FCOS, the detection speed is increased by 10.4 frames per second while ensuring that the average accuracy is not attenuated. Compared with Faster-RCNN, Yolo4, Efficientdet, detection speed and average accuracy have obvious advantages.
[1] |
郑元勋, 郭慧吉, 谢宁. 基于统计分析的桥梁坍塌事故原因剖析及预防措施研究[J]. 中外公路, 2017, 37(6): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201706028.htm
Zheng Y X, Guo H J, Xie N. Analysis of causes of bridge collapse accidents based on statistical analysis and research on preventive measures[J]. Journal of China&Foreign Highway, 2017, 37(6): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201706028.htm
|
[2] |
Ahmed M A T, Huang Z, Fan X, et al. Detection crack in image using Otsu method and multiple filtering in image processing techniques[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(3): 1030-1033. doi: 10.1016/j.ijleo.2015.09.147
|
[3] |
Shan B H, Zheng S J, Ou J P. A stereovision-based crack width detection approach for concrete surface assessment[J]. KSCE Journal of Civil Engineering, 2016, 20(2): 803-812. doi: 10.1007/s12205-015-0461-6
|
[4] |
Xiao Y, Li J. Crack detection algorithm based on the fusion of percolation theory and adaptive canny operator[C]//37th Chinese Control Conference. Piscataway, USA: IEEE, 2018: 4295-4299.
|
[5] |
贺福强, 平安, 罗红, 等. 局部特征聚类联合区域增长的桥梁裂缝检测[J]. 科学技术与工程, 2019, 19(34): 272-277. doi: 10.3969/j.issn.1671-1815.2019.34.040
He F Q, Ping A, Luo H, et al. Bridge crack detection based on local feature clustering combined with regional growth[J]. Science Technology and Engineering, 2019, 19(34): 272-277. doi: 10.3969/j.issn.1671-1815.2019.34.040
|
[6] |
李良福, 马卫飞, 李丽, 等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019, 45(9): 1727-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201909010.htm
Li L F, Ma W F, Li L, et al. Research on detection algorithm for bridge cracks based on deep learning[J]. Acta Automatica Sinica, 2019, 45(9): 1727-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201909010.htm
|
[7] |
高庆飞, 王宇, 刘晨光, 等. 基于卷积神经网络算法的混凝土桥梁裂缝识别与定位技术[J]. 公路, 2020, 65(9): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202009053.htm
Gao Q F, Wang Y, Liu C G, et al. Identifying and positioning technologies of concrete bridge crack based on convolutional neural network[J]. Highway, 2020, 65(9): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202009053.htm
|
[8] |
吴向东, 赵健康, 刘传奇. 基于CNN与CRF的桥梁裂缝检测算法[J]. 计算机工程与设计, 2021, 42(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202101009.htm
Wu X D, Zhao J K, Liu C Q. Bridge crack detection algorithm based on CNN and CRF[J]. Computer Engineering and Design, 2021, 42(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ202101009.htm
|
[9] |
朱苏雅, 杜建超, 李云松, 等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019, 46(4): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201904006.htm
Zhu S Y, Du J C, Li Y S, et al. Method for bridge crack detection based on the U-Net convolutional networks[J]. Journal of Xidian University, 2019, 46(4): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201904006.htm
|
[10] |
杨杰文, 章光, 陈西江, 等. 基于深度学习的较复杂背景下桥梁裂缝检测[J]. 铁道科学与工程学报, 2020, 17(11): 2722-2728. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011002.htm
Yang J W, Zhang G, Chen X J, et al. Research on bridge crack detection based on deep learning under complex background[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2722-2728. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011002.htm
|
[11] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2014: 580-587.
|
[12] |
Girshick R. Fast R-CNN[C]//IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2015: 1440-1448.
|
[13] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[14] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016: 779-788.
|
[15] |
Redmon J, Farhadi A. YOLOv3: An incremental improvement[DB/OL]. (2018-04-08)[2021-05-27]. https://arxiv.org/abs/1804.02767.
|
[16] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimalspeed and accuracy of object detection[EB/OL]. (2020-04-23)[2021-05-27]. https://arxiv.org/abs/2004.10934v1.
|
[17] |
Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[DB/OL]. (2019-11-20)[2021-05-27]. https://arxiv.org/abs/1911.09070.
|
[18] |
Tian Z, Shen C, Chen H, et al. FCOS: Fully convolutional one-stage object detection[DB/OL]. (2019-04-02)[2021-05-27]. https://arxiv.org/abs/1904.01355.
|
[19] |
Tan M X, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[DB/OL]. (2019-05-28)[2021-05-27]. https://arxiv.org/abs/1905.11946.
|
[20] |
Zhang Y, Kong J, Qi M, et al. Object detection based on multiple information fusion net[J]. Applied Sciences, 2020, 10(418): 1-12.
|
[1] | WEI Jinyang, YUAN Mingzhe, CAO Feidao, BAI Haijun, WANG Wenhong. Defect Detection Based on Attention Mechanism and Atrous Pyramid Pooling[J]. INFORMATION AND CONTROL, 2024, 53(5): 662-672. DOI: 10.13976/j.cnki.xk.2024.3148 |
[2] | WANG Zhaowei, ZHONG Xiaoyong, SONG Xiangjin, ZHAO Wenxiang. Bearing Fault Diagnosis Based on Multi-dilated Convolutional Networks with Adaptive Feature Selection[J]. INFORMATION AND CONTROL, 2024, 53(5): 615-630. DOI: 10.13976/j.cnki.xk.2024.3223 |
[3] | WANG Yuanzhe, LIANG Tengfei, ZENG Yuqiao, JIN Yi, LI Yidong. Overview of Multispectral Object Detection[J]. INFORMATION AND CONTROL, 2024, 53(3): 287-301. DOI: 10.13976/j.cnki.xk.2024.3238 |
[4] | CAI Da, FAN Baojie. Spatial Feature Selection for Underwater Object Detection[J]. INFORMATION AND CONTROL, 2022, 51(2): 214-222. DOI: 10.13976/j.cnki.xk.2022.1597 |
[5] | NIE Yu, CHEN Chunmei, LIU Guihua. Improved Feature Detector Based on VGG16[J]. INFORMATION AND CONTROL, 2021, 50(4): 483-489. DOI: 10.13976/j.cnki.xk.2021.0509 |
[6] | NIU Bingchuan, WEN Chenglin. Method of Combined Feature Enhancement and Network Parameter Optimization for Face Recognition[J]. INFORMATION AND CONTROL, 2021, 50(3): 350-355, 365. DOI: 10.13976/j.cnki.xk.2021.0283 |
[7] | REN Yajing, ZHANG Hongli. Vehicle Target Detection Based on Deep Self-encoding Network with TDA[J]. INFORMATION AND CONTROL, 2019, 48(5): 627-633. DOI: 10.13976/j.cnki.xk.2019.8567 |
[8] | HU Jiaojiao, WANG Xiaofeng, ZHANG Meng, ZHANG Depeng, HU Shaolin. Time-series Data Anomaly Detection Method Based on Deep Learning[J]. INFORMATION AND CONTROL, 2019, 48(1): 1-8. DOI: 10.13976/j.cnki.xk.2019.8062 |
[9] | LI Guo, YANG Guo-qing, ZHANG Xin-ke, GAO Qing-ji. A Moving Object Detection Algorithm Based on Scale Invariant Feature Transform Feature Point[J]. INFORMATION AND CONTROL, 2008, 37(3): 280-283. |
[10] | ZHOU Jie, PENG Jiaxiong, DING Mingyue. DIRECTIONAL WAVELET TRANSFORM AND ITS APPLICATION IN MOVING DIM TARGET DETECTION[J]. INFORMATION AND CONTROL, 1996, 25(1): 21-27. |
1. |
魏英姿,苏迈. YOLOv5框架下的飞机蒙皮铆接缺陷检测. 组合机床与自动化加工技术. 2023(07): 106-109 .
![]() | |
2. |
黄辉. 道路桥梁裂缝成因及应对措施分析——以广东省某新建高速公路为例. 工程技术研究. 2022(23): 131-133+163 .
![]() | |
3. |
任永富. 基于轻型注意力卷积网络的无人机遥感影像多目标检测. 测绘技术装备. 2022(04): 89-94 .
![]() |