ZHENG Heng, LIU Fuchun, JIANG Yanrong. Co-detectability for Decentralized Weighted Discrete Event Systems[J]. INFORMATION AND CONTROL, 2023, 52(4): 525-530, 541. DOI: 10.13976/j.cnki.xk.2023.2202
Citation: ZHENG Heng, LIU Fuchun, JIANG Yanrong. Co-detectability for Decentralized Weighted Discrete Event Systems[J]. INFORMATION AND CONTROL, 2023, 52(4): 525-530, 541. DOI: 10.13976/j.cnki.xk.2023.2202

Co-detectability for Decentralized Weighted Discrete Event Systems

More Information
  • Received Date: May 08, 2022
  • Revised Date: January 05, 2023
  • Accepted Date: September 01, 2022
  • Available Online: September 12, 2023
  • To carry the corresponding quantitative information of the system, weighted automata are used as the models for studying the co-detectability of weighted discrete event systems. First, the notions of strong and weak co-detectability of decentralized weighted discrete event systems are formalized. Then, the algorithms based on each sub-station site observer for constructing a co-observer are proposed, and necessary and sufficient conditions for strong and weak co-detectability of decentralized weighted discrete event systems are obtained. Finally, an application example for a wireless sensor network system is provided.

  • [1]
    CASSANDRAS C G, LAFORTUNE S. Introduction to discrete event systems[M]. Berlin, Germany: Springer, 2010: 1-130.
    [2]
    LAI A, LAHAYE S, GIUA A. State estimation of max-plus automata with unobservable events[J]. Automatica, 2019, 105: 36-42. doi: 10.1016/j.automatica.2019.03.003
    [3]
    BASILE F, CABASINO M P, SEATZU C. State estimation and fault diagnosis of labeled time petri net systems with unobservable transitions[J]. IEEE Transactions on Automatic Control, 2015, 60(4): 997-1009. doi: 10.1109/TAC.2014.2363916
    [4]
    LIN F, YING H. Modeling and control of fuzzy discrete event systems[J]. IEEE Transactions on Systems Man & Cybernetics, Part B: Cybernetics, 2002, 32(4): 408-415.
    [5]
    SHU S, LIN F, YING H. Detectability of discrete event systems[J]. IEEE Transactions on Automatic Control, 2007, 52(12): 2356-2359. doi: 10.1109/TAC.2007.910713
    [6]
    SHU S, LIN F. Delayed detectability of discrete event systems[J]. IEEE Transactions on Automatic Control, 2013, 58(4): 862-875. doi: 10.1109/TAC.2012.2224255
    [7]
    SHU S, LIN F. I-Detectability of discrete-event systems[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(1): 187-196. doi: 10.1109/TASE.2012.2215959
    [8]
    KEROGLOU C, HADJICOSTIS C N. Detectability in stochastic discrete event systems[J]. IFAC Proceedings Volumes, 2014, 47(2): 27-32. doi: 10.3182/20140514-3-FR-4046.00067
    [9]
    ZHANG K, GIUA A, CHEN Z. K-delayed strong detectability of discrete-event systems[C]//58th IEEE Conference on Decision and Control. Piscataway, USA: IEEE, 2019: 7647-7652.
    [10]
    谢铭辉, 刘富春. 模糊离散事件系统的可测性[J]. 信息与控制, 2022, 51(2): 223-229. doi: 10.13976/j.cnki.xk.2022.1256

    XIE M H, LIU F C. Detectability of fuzzy discrete event systems[J]. Information and Control, 2022, 51(2): 223-229. doi: 10.13976/j.cnki.xk.2022.1256
    [11]
    金衍伟, 刘富春, 赵锐, 等. 分布式随机离散事件系统的模式故障预测[J]. 控制理论与应用, 2022, 39(1): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202201007.htm

    JIN Y W, LIU F C, ZHAO R, et al. Coprognosability of pattern fault for decentralized stochastic discrete event systems[J]. Control Theory and Applications, 2022, 39(1): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202201007.htm
    [12]
    SHU S, LIN F. Co-detectability of multi-agent discrete event systems[C]//Chinese Control and Decision Conference. Shenyang, China: Northeastern University Press, 2011: 1708-1713.
    [13]
    谢仁可, 刘富春, 赵锐, 等. 分布式模糊离散事件系统的故障预测[J]. 控制理论与应用, 2020, 37(8): 1808-1814. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202201007.htm

    XIE R K, LIU F C, ZHAO R, et al. Fault prognosis of decentralized fuzzy discrete-event systems[J]. Control Theory and Applications, 2020, 37(8): 1808-1814. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202201007.htm
    [14]
    GAUBERT S. Performance evaluation of (max, +) automata[J]. IEEE Transactions on Automatic Control, 1995, 40(12): 2014-2025. doi: 10.1109/9.478227
    [15]
    GAUBERT S, MAIRESSE J. Modeling and analysis of timed petri nets using heaps of pieces[J]. IEEE Transactions on Automatic Control, 1999, 44(4): 683-697. doi: 10.1109/9.754807
    [16]
    LAHAYE S, KOMENDA J, BOIMOND J L. Compositions of (max, +) automata[J]. Discrete Event Dynamic Systems, 2015, 25(1/2): 323-344.
    [17]
    KOMENDA J, LAHAYE S, BOIMOND J L. Determinization of timed petri nets behaviors[J]. Discrete Event Dynamic Systems, 2016, 26(3): 417-437.
    [18]
    VIANA G, MOREIRA M V, BASILIO J C. Codiagnosability analysis of discrete-event systems modeled by weighted automata[J]. IEEE Transactions on Automatic Control, 2019, 64(10): 4361-4368.
    [19]
    LAI A, LAHAYE S, GIUA A. Verification of detectability for unambiguous weighted automata[J]. IEEE Transactions on Automatic Control, 2021, 66(3): 1437-1444.
    [20]
    LAI A, LAHAYE S, LI Z. Initial-state detectability and initial-state opacity of unambiguous weighted automata[J/OL]. Automatica, 2021, 127(12)[2022-01-15]. https://www.sciencedirect.com/science/article/pii/S0005109821000108.DOI:10.1016/j.automatica.2021.109490" target="_blank">10.1016/j.automatica.2021.109490">https://www.sciencedirect.com/science/article/pii/S0005109821000108.DOI:10.1016/j.automatica.2021.109490.

Catalog

    Article views (53) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return