FAN Boliang, GAO Feng, KOU Peng. Online Boosting Regression Method and Its Application to Load Forecasting in Energy-Intensive Enterprise[J]. INFORMATION AND CONTROL, 2014, 43(6): 750-756. DOI: 10.13976/j.cnki.xk.2014.0750
Citation: FAN Boliang, GAO Feng, KOU Peng. Online Boosting Regression Method and Its Application to Load Forecasting in Energy-Intensive Enterprise[J]. INFORMATION AND CONTROL, 2014, 43(6): 750-756. DOI: 10.13976/j.cnki.xk.2014.0750

Online Boosting Regression Method and Its Application to Load Forecasting in Energy-Intensive Enterprise

More Information
  • Received Date: October 20, 2013
  • Revised Date: September 11, 2014
  • Published Date: December 19, 2014
  • Focusing on the electricity load forecasting in energy-intensive enterprises, we propose an online forecasting algorithm based on the boosting method. The algorithm converts a regression problem such as load forecasting to a binary classification problem via geometric operation, and then it obtains a timely adaptive ensemble max-margin separating plane using an online smooth boosting algorithm. We prove that such a plane is theoretically identical to a regression function for the original load forecasting problem, and also prove that the proposed algorithm has convergence for the training set. Simulation results show that the proposed algorithm improves real-time tracking capability by implementing online updating, and it improves the accuracy and stability of load forecasting through the boosting algorithm. The forecasting error is less than 3%.
  • [1]
    秦睿, 张世才, 张顺. 高耗能企业电价承受能力分析及对策[J]. 工业仪表与自动化装置, 2013(6): 117-119. Qin R, Zhang S C, Zhang S. Analysis of the bearing capacity and countermeasures of electricity price in high-energy consuming enterprises[J]. Industrial Instrumentation & Automation, 2013(6): 117-119.
    [2]
    蒋强, 肖建, 郑高, 等. 基于重构相空间FLS-SVM的电力系统混沌预测模型[J]. 信息与控制, 2011, 40(6): 175-179. Jiang Q, Xiao J, Zheng G, et al. Power system chaos prediction model based on FLS-SVM via reconstructed phase space[J]. Information and Control, 2011, 40(2): 175-179.
    [3]
    Dehestani D, Su S, Nguyen H, et al. Robust fault tolerant application for HVAC system based on combination of online SVM and ANN black box model[C]//European Control Conference. 2013: 2976-2981.
    [4]
    潘玉民, 张晓宇, 张全柱, 等. 基于量子粒子群优化的小波神经网络预测模型[J]. 信息与控制, 2012, 41(6): 741-746, 759. Pan Y M, Zhang X Y, Zhang Q Z, et al. A wavelet neural network prediction model based on quantum particle swarm optimization[J]. Information and Control, 2012, 41(6): 741-746, 759.
    [5]
    王孔森, 盛戈皞, 孙旭日, 等. 基于径向基神经网络的输电线路动态容量在线预测[J]. 电网技术, 2013, 37(6): 1719-1725. Wang K S, Sheng G H, Sun X R, et al. Online prediction of transmission dynamic line rating based on radial basis function neural network[J]. Power System Technology, 2013, 37(6): 1719-1725.
    [6]
    Avnimelech R, Intrator N. Boosting regression estimators[J]. Neural Computation, 1999, 11(2): 491-513.
    [7]
    Duffy N, Helmbold D. Boosting method for regression[J]. Machine Learning, 2002, 47(2): 153-220.
    [8]
    Ridgeway G, Madigan D, Richardson T. Boosting methodology for regression problem[C]//Proceedings of the 7th International Workshop on Artificial Intelligence and Statistics. San Francisco, USA: Morgan Kaufmann Publishers Inc, 1999: 152-161.
    [9]
    Oza N C. Online bagging and boosting[C]//2005 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, USA: IEEE, 2005: 2340-2345.
    [10]
    Grabner H, Bischof H. On-line boosting and vision[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2006: 260-267.
    [11]
    寇鹏, 高峰. 几何转换Boosting回归算法及其在高耗能企业负荷预测中的应用[J]. 系统工程理论与实践, 2013, 33(7): 1880-1888. Kou P, Gao F. Boosting regression method based on geometric conversion and its application to load forecasting in energy-intensive enterprise[J]. Systems Engineering: Theory & Practice, 2013, 33(7): 1880-1888.
    [12]
    Kou P, Gao F, Gao L. A geometric conversion approach for boosting regression problem[C]//2010 2nd International Conference on Computer Engineering and Technology. Piscataway, NJ, USA: IEEE, 2010: V1-595-V1-599.
    [13]
    Chen S T, Lin H T, Lu C J. An online boosting algorithm with theoretical justifications[C]//Proceedings of the 29th International Conference on Machine Learning. Madison, Wisconsin, USA: Omnipress, 2012: 101-135.
    [14]
    Servedio R. Smooth boosting and learning with malicious noise[J]. Journal of Machine Learning Research, 2003, 4(9): 633-648.
    [15]
    Zhang Y, Zhou Q, Sun C, et al. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment[J]. IEEE Transactions on Power Systems, 2008, 23(3): 853-858.
    [16]
    Fan S, Chen L. Short-term load forecasting based on an adaptive hybrid method[J]. IEEE Transactions on Power Systems, 2006, 21(1): 392-401.
    [17]
    Esa A P, Yuan L. Development of new algorithms for power system short-term load forecasting[J]. International Journal of Computer and Information Technology, 2013, 2(2): 201-209.
    [18]
    Raginsky M, Rakhlin A, Yuksel S. Online convex programming and regularization in adaptive control[C]//49th IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 2010: 1957-1962.
  • Related Articles

    [1]ZHANG Peixiao, YIN Xiaohong, LI Shaoyuan, WANG Xinli. The Short-term Forecasting of Power Load in Agricultural Greenhouses Based on VMD-CNN-LSTM[J]. INFORMATION AND CONTROL, 2024, 53(2): 238-249. DOI: 10.13976/j.cnki.xk.2024.3021
    [2]JIANG Guanjie, HUANG Min, JIANG Hongyu, WANG Xingwei. Negotiation Based Completion Risk Management for Virtual Enterprise[J]. INFORMATION AND CONTROL, 2014, 43(5): 619-623. DOI: 10.13976/j.cnki.xk.2014.0619
    [3]LUO Yong, ZHENG Jin, NING Meifeng. Application of PSO-WNN Combined Model Based on Similar Days Searching to Short-term Electric Power Load Forecasting[J]. INFORMATION AND CONTROL, 2013, 42(3): 371-376. DOI: 10.3724/SP.J.1219.2013.00371
    [4]LUO Xianxi, YUAN Mingzhe, XU Huayan, WANG Hong. The New Research Progress of Advanced Energy Management System for Iron & Steel Enterprises[J]. INFORMATION AND CONTROL, 2011, 40(6): 819-828.
    [5]LIN Jian-ning, WU Hui-zhong. On Data-intensive Task Scheduling Algorithm in the Grid Environment Based on Trust Model[J]. INFORMATION AND CONTROL, 2006, 35(5): 667-672.
    [6]ZHANG Li, ZHANG Fu-shun. Design of Partners Search System for Virtual Enterprise[J]. INFORMATION AND CONTROL, 2004, 33(3): 277-280.
    [7]FANG Zhi-mei, TU Jian-fei, YE Fei-fan. ENTERPRISE RESOURCE PLANNING SYSTEMS IN VIRTUAL ORGANIZATIONS FOR SMALL AND MEDIUM-SIZED MANUFACTURING ENTERPRISES[J]. INFORMATION AND CONTROL, 2003, 32(6): 521-525.
    [8]YANG Yan-xi, LIU Ding, LI Qi, ZHENG Gang. SHORT TERM LOAD FORECASTING USING A MULTILAYER NEURAL NETWORK WITH BP-GA MIXED ALGORITHMS[J]. INFORMATION AND CONTROL, 2002, 31(3): 284-288.
    [9]LI Li, SHI Yan-sen, XUE Jin-song, ZHU Yun-long. RESEARCH ON MULTI-AGENT BASED INTEGRATED FRAMEWORK OF VIRTUAL ENTERPRISE[J]. INFORMATION AND CONTROL, 2002, 31(2): 112-116.
    [10]ZHANG Li, SHEN Zhi-yong, ZHANG Fu-shun, XUE Jin-song. SUPPOTING SYSTEM FOR VIRTUAL ENTERPRISE——VESS[J]. INFORMATION AND CONTROL, 2002, 31(1): 19-24.

Catalog

    Article views (2092) PDF downloads (321) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return