WANG Xuezhu, LI Hongyi, WANG Yuechao, CUI Long. High-precision Adaptive Backstepping Control of Flexible Joint Robots[J]. INFORMATION AND CONTROL, 2016, 45(1): 1-7. DOI: 10.13976/j.cnki.xk.2016.0001
Citation: WANG Xuezhu, LI Hongyi, WANG Yuechao, CUI Long. High-precision Adaptive Backstepping Control of Flexible Joint Robots[J]. INFORMATION AND CONTROL, 2016, 45(1): 1-7. DOI: 10.13976/j.cnki.xk.2016.0001

High-precision Adaptive Backstepping Control of Flexible Joint Robots

More Information
  • Received Date: June 02, 2015
  • Revised Date: October 11, 2015
  • Available Online: December 07, 2022
  • Published Date: February 19, 2016
  • In order to achieve high-precision motion control performance in multi-link flexible joint robots, we present a complete dynamics model, which includes the coupling between the links and the actuators, a LuGre dynamic friction model, and backlash. Based on this dynamics model, we propose an adaptive backstepping control method with observers, in which non-measurable terms are estimated and compensated online. Our theoretical analysis proves the convergence of the observer and the stability of the closed-loop system. The simulation results of this method on a 3-DOF flexible joint robot verify the effectivity of the observer, and demonstrate that the proposed controller can reduce link errors and achieve good trajectory tracking performance.
  • [1]
    Ozgoli S, Taghirad H D. A survey on the control of flexible joint robots[J]. Asian Journal of Control, 2006, 8(4): 1-15.
    [2]
    张晓东, 贾庆轩, 孙汉旭, 等. 空间机器人柔性关节轨迹控制研究[J]. 宇航学报, 2008, 29(6): 1865-1870.

    Zhang X D, Jia Q X, Sun H X, et al. The research of space robot flexible joint trajectory control[J]. Journal of Astronautics, 2008, 29(6): 1865-1870.
    [3]
    Chaoui H, Gueaieb W. Type-2 fuzzy logic control of a flexible-joint manipulator[J]. Journal of Intelligent and Robotic Systems, 2008, 51(2): 159-186.
    [4]
    Huang A C, Chen Y C. Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties[J]. IEEE Transactions on Control Systems Technology, 2004, 12(5): 770-775.
    [5]
    Yen H M, Li T H S, Chang Y C. Adaptive neural network based tracking control for electrically driven flexible-joint robots without velocity measurements[J]. Computers and Mathematics with Applications, 2012, 64(5): 1022-1032.
    [6]
    陈志勇, 郭益深, 陈力. 柔性关节双臂空间机器人的滑模神经网络控制[J]. 系统仿真学报, 2014, 26(12): 2950-2956.

    Chen Z Y, Guo Y S, Chen L. Sliding-mode neural network control of flexible-joint dual-arm space robot[J]. Journal of System Simulation, 2014, 26(12): 2950-2956.
    [7]
    Tomei P. A simple PD controller for robots with elastic joints[J]. IEEE Transactions on Automatic Control, 1991, 36(10): 1208-1213.
    [8]
    Albu-Schaffer A, Ott C, Hirzinger G. A unified passivity-based control framework for position, torque and impedance control of flexible joint robots[J]. International Journal of Robotics Research, 2007, 26(1): 23-39.
    [9]
    Ruderman M, Hoffmann F, Bertram T. Modeling and identification of elastic robot joints with hysteresis and backlash[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 3840-3847.
    [10]
    Tjahjowidodo T, Al-Bender F, Van Brussel H. Theoretical modelling and experimental identification of nonlinear torsional behaviour in harmonic drives[J]. Mechatronics, 2013, 23(5): 497-504.
    [11]
    Albu-Schaffer A, Bertleff W, Rebele B, et al. ROKVISS-Robotics component verification on ISS current experimental results on parameter identification[C]//2006 IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 3879-3885.
    [12]
    张奇, 刘振, 谢宗武, 等. 具有谐波减速器的柔性关节参数辨识[J]. 机器人, 2014, 36(2): 164-170.

    Zhang Q, Liu Z, Xie Z W, et al. Parameters identification of flexible joints with harmonic driver[J]. Robot, 2014, 36(2): 164-170.
    [13]
    郭闯强, 倪风雷, 孙敬颋, 等. 具有力矩传感器的柔性关节的振动抑制[J]. 机器人, 2011, 33(4): 449-454.

    Guo C Q, Ni F L, Sun J T, et al. Vibration suppression for the flexible joint with torque sensor[J]. Robot, 2011, 33(4): 449-454.
    [14]
    刘振国, 武玉强. 随机激励下单杆柔性关节机械臂的建模与控制[J]. 控制理论与应用, 2014, 31(8): 1105-1110.

    Liu Z G, Wu Y Q. Modeling and control for single-link flexible-joint arm with random disturbances[J]. Control Theory and Applications, 2014, 31(8): 1105-1110.
    [15]
    党进, 倪风雷, 刘业超, 等. 基于新型补偿控制策略的柔性关节控制器设计[J]. 机器人, 2011, 33(1): 150-155.

    Dang J, Ni F L, Liu Y C, et al. Design for flexible joint controller based on a new compensation control strategy[J]. Robot, 2011, 33(1): 150-155.
    [16]
    Wang X Z, Li H Y, Wang Y C, et al. Adaptive backstepping control of flexible joint robots with friction compensation based on LuGre model[C]//26th Chinese Control and Decision Conference. Piscataway, NJ, USA: IEEE, 2014: 1484-1489.
    [17]
    Salmasi H, Fotouhi R, Nikiforuk P N. A manoeuvre control strategy for flexible-joint manipulators with joint dry friction[J]. Robotica, 2010, 28(4): 621-635.
    [18]
    Siciliano B, Sciavicco L, Villani L, et al. Robotics-Modelling, planning and control[M]. Berlin, Germany: Springer, 2009.
    [19]
    Olsson H, Astrom K J, de Wit C C, et al. Friction models and friction compensation[J]. European Journal of Control, 1998, 4(3): 176-195.
    [20]
    席雷平, 陈自力, 齐晓慧. 基于非线性干扰观测器的机械臂自适应反演滑模控制[J]. 信息与控制, 2013, 42(4): 470-477.

    Xi L P, Chen Z L, Qi X H. Adaptive backstepping sliding mode control for robotic manipulator with nonlinear disturbance observer[J]. Information and Control, 2013, 42(4): 470-477.
    [21]
    Yao J Y, Jiao Z X, Yao B. Robust control for static loading of electro-hydraulic load simulator with friction compensation[J]. Chinese Journal of Aeronautics, 2012, 25(6): 954-962.

Catalog

    Article views (1017) PDF downloads (682) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return