LI Kun, HAN Ying, HUANG Haijiao. Chaotic Time Series Prediction Based on IBH-LSSVM and Its Application to Short-term Prediction of Dynamic Fluid Level in Oil Wells[J]. INFORMATION AND CONTROL, 2016, 45(2): 241-247,256. DOI: 10.13976/j.cnki.xk.2016.0241
Citation: LI Kun, HAN Ying, HUANG Haijiao. Chaotic Time Series Prediction Based on IBH-LSSVM and Its Application to Short-term Prediction of Dynamic Fluid Level in Oil Wells[J]. INFORMATION AND CONTROL, 2016, 45(2): 241-247,256. DOI: 10.13976/j.cnki.xk.2016.0241

Chaotic Time Series Prediction Based on IBH-LSSVM and Its Application to Short-term Prediction of Dynamic Fluid Level in Oil Wells

More Information
  • Received Date: February 10, 2015
  • Revised Date: June 29, 2015
  • Available Online: December 07, 2022
  • Published Date: April 19, 2016
  • In order to improve prediction accuracy, the problem of selecting model parameters is typically addressed using combinatorial optimization. However, the prediction results are often influenced by uncertain parameters in the optimization algorithm. To solve this problem, we propose a prediction model based on an improved black-hole algorithm and a least-squares support vector machine. In this model, we consider the parameters of the embedding dimension, time delay, regularization, and kernel function as the combinatorial optimization targets. The optimization algorithm is not affected by any subjective parameters. We use the online verification method based on the fast leave-one-out technique to prevent over-fitting. By improving the iterative searching mechanism, better prediction effects are achieved. The case study results confirm the significance of the proposed model in the practical application of making short-term predictions of the dynamic fluid level in oil wells.
  • [1]
    Dowell J, Weiss S, Hill D, et al. Short-term spatio-temporal prediction of wind speed and direction[J]. Wind Energy, 2014(17): 1945-1955.
    [2]
    Hodge V J, Krishnan R, Austin J, et al. Short-term prediction of traffic flow using a binary neural network[J]. Neural Computing and Applications, 2014, 25(7/8): 1639-1655.
    [3]
    Reid D, Hussain A J, Tawfik H. Financial time series prediction using spiking neural networks[J]. PLoS ONE, 2014, 9(8): e103656.
    [4]
    唐舟进, 彭涛, 王文博. 一种基于相关分析的局域最小二乘支持向量机小尺度网络流量预测算法[J]. 物理学报, 2014, 63(13): 1-10.

    Tang Z J, Peng T, Wang W B. A local least square support vector machine prediction algorithm of small scale network traffic based on correlation analysis[J]. Acta Physica Sinica, 2014, 63(13): 1-10.
    [5]
    Chisci L, Mavino A, Perferi G, et al. Real-time epileptic seizure prediction using AR models and support vector machines[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(5): 1124-1132.
    [6]
    Narendra B C, Eswara R B. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data[J]. Applied Soft Computing, 2014, 23(1): 27-38.
    [7]
    Du W, Leung S Y S, Kwong C K. Time series forecasting by neural networks: A knee point-based multi-objective evolutionary algorithm approach[J]. Expert Systems with Applications, 2014, 41(7): 8049-8061.
    [8]
    孟庆芳, 陈珊珊, 陈月辉, 等. 基于递归量化分析与支持向量机的癫痫脑电自动检测方法[J]. 物理学报, 2014, 63(5): 1-7.

    Meng Q F, Chen S S, Chen Y H, et al. Automatic detection of epileptic EEG based on recurrence quantification analysis and SVM[J]. Acta Physica Sinica, 2014, 63(5): 1-7.
    [9]
    Wang Z X, Pei L L. An optimized grey dynamic model for forecasting the output of high-tech industry in china[J]. Mathematical Problems in Engineering, 2014(586284): 1-7.
    [10]
    Askari S, Montazerin N. A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering[J]. Expert Systems with Applications, 2015, 42(3): 2121-2135.
    [11]
    Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
    [12]
    田中大, 高宪文, 石彤. 用于混沌时间序列预测的组合核函数最小二乘支持向量机[J]. 物理学报, 2014, 63(16): 1-11.

    Tian Z D, Gao X W, Shi T. Combination kernel function least squares support vector machine for chaotic time series prediction[J]. Acta Physica Sinica, 2014, 63(16): 1-11.
    [13]
    Zhao L X, Shui P B, Jiang F, et al. Using monitoring data of surface soil to predict whole crop-root zone soil water content with PSO-LSSVM, GRNN and WNN[J]. Earth Science Informatics, 2014, 7(1): 59-68.
    [14]
    Shen M, Chen W N, Zhang J, et al. Optimal selection of parameters for nonuniform embedding of chaotic time series using ant colony optimization[J]. IEEE Transactions on Cybernetics, 2013, 43(2): 790-802.
    [15]
    Sadaei H J, Enayatifar R, Abdullah A H, et al. Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search[J]. International Journal of Electrical Power & Energy Systems, 2014, 62(1): 118-129.
    [16]
    Liu Y, Gao Z L, Li P, et al. Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(11): 4313-4327.
    [17]
    Hatamlou A. Black hole: A new heuristic optimization approach for data clustering[J]. Information Science, 2013, 222(1): 75-184.
    [18]
    刘毅, 张锡成, 朱可辉, 等. 自适应递推核学习及在橡胶混炼过程在线质量预报的工业应用[J]. 控制理论与应用, 2010, 27(5): 609-614.

    Liu Y, Zhang X C, Zhu K H, et al. Adaptive recursive kernel learning with application to online quality prediction of industrial rubber mixing process[J]. Control Theory & Applications, 2010, 27(5): 609-614.
    [19]
    Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D: Nonlinear Phenomena, 1999, 127(1): 48-60.
    [20]
    Rosenstein M T, Collins J J, Deluca C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D, 1993, 65(1): 117-134.
    [21]
    Wang J, Wang W, Wu S. A new support vector machine optimized by simulated annealing for global optimization[J]. International Journal of Precision Engineering and Manufacturing, 2012, 2(1): 8-14.
  • Related Articles

    [1]WANG Rui, XU Xinchao, LU Jing. Short-term Wind Power Prediction Based on SSA Optimized Variational Mode Decomposition and Hybrid Kernel Extreme Learning Machine[J]. INFORMATION AND CONTROL, 2023, 52(4): 444-454. DOI: 10.13976/j.cnki.xk.2023.2281
    [2]KONG Wen, CHE Quan, ZHAO Huirong, PENG Daogang. Short-term Prediction of Coal Stock in Power Plant Based on Singular Spectrum Analysis and Long Short-term Memory Neural Network[J]. INFORMATION AND CONTROL, 2020, 49(6): 742-751. DOI: 10.13976/j.cnki.xk.2020.9484
    [3]ZHAO Chao, DAI Kuncheng. Power System Short-term Load Forecasting Based on Adaptive Weighted Least Squares Support Vector Machine[J]. INFORMATION AND CONTROL, 2015, 44(5): 634-640. DOI: 10.13976/j.cnki.xk.2015.0634
    [4]XU Qin, TANG Xinmin, HAN Songchen, LU Yiyu. Short-Term 4D Trajectory Prediction Based on Parameter Identification[J]. INFORMATION AND CONTROL, 2014, 43(4): 501-505,512. DOI: 10.13976/j.cnki.xk.2014.0501
    [5]WANG Tong, GAO Xianwen, ZHAI Yujia, LIU Chunfang. Improved Detection and Isolation of Sensor Fault Based on PSO-LSSVM Prediction[J]. INFORMATION AND CONTROL, 2014, 43(2): 146-151. DOI: 10.3724/SP.J.1219.2014.00146
    [6]CAO Kai, PENG Dongdong, CHEN Feng, LI Xiuhai. A modeling Approach Based on Combined Short-term and Long-term Prediction[J]. INFORMATION AND CONTROL, 2013, 42(4): 430-436. DOI: 10.3724/SP.J.1219.2013.00430
    [7]YAN Gang, LIANG Ximing, LONG Zuqiang, LONG Weng. Double Mode Control Based on Least Squares Support Vector Machine[J]. INFORMATION AND CONTROL, 2011, 40(6): 721-727.
    [8]ZHANG Xiaoping, TANG Zhenxing, ZHAO Jun, WANG Wei, CONG Liqun, FENG Weimin. Online Prediction Modelling of Blast Furnace Gas Output in Steel Industry[J]. INFORMATION AND CONTROL, 2010, 39(6): 774-782.
    [9]LIANG Ximing, YAN Gang, LI Shanchun, LONG Wen, LONG Zuqiang. Nonlinear Predictive Control Based on Least Squares Support Vector Machines and Chaos Optimization[J]. INFORMATION AND CONTROL, 2010, 39(2): 129-135.
    [10]YANG Yan-xi, LIU Ding, LI Qi, ZHENG Gang. SHORT TERM LOAD FORECASTING USING A MULTILAYER NEURAL NETWORK WITH BP-GA MIXED ALGORITHMS[J]. INFORMATION AND CONTROL, 2002, 31(3): 284-288.

Catalog

    Article views (867) PDF downloads (245) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return