Citation: | LI Jingyi, FU Yue. Optimal Data Sampling Decoupling Control Method for a Class of Industrial Processes[J]. INFORMATION AND CONTROL, 2017, 46(4): 394-399. DOI: 10.13976/j.cnki.xk.2017.0394 |
The dynamic model of the industrial operation process is composed of the dynamic model of the underlying device layer controlled object and the upper operating layer production process. We propose an optimal decoupling control method based on data sampling for a class of strong coupling industrial processes. The method transforms the control problem based on data sampling into the stability problem of time-varying delay system in the underlying device layer. On the basis of the Krasovskii-Lyapunov function, we present the parameters of the state feedback controller. The dynamic model of the industrial operation process is a hybrid model that includes continuous and discrete signals because of the sampling of the underlying device layer. Thus, in the upper operating layer, the hybrid model is first discretized. Then, for a discrete generalized model of operational processes, we design the optimal decoupling controller by combining the decoupling control and the optimal tracking control method. Finally, a numerical simulation experiment is performed to demonstrate the effectiveness of the proposed method.
[1] |
Hodouin D, Jamsa-Jounela S L, Carvalho M T, et al. State of the art and challenges in mineral processing control[J]. Control Engineering Practice, 2001, 9(9):995-1005. doi: 10.1016/S0967-0661(01)00088-0
|
[2] |
柴天佑.复杂工业过程运行优化与反馈控制[J].自动化学报, 2013, 39(11):1744-1757. http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201311002.htm
Chai T Y. operational optimization and feedback control for complex industrial processes[J]. Acta Automatica Sinica, 2013, 39(11):1744-1757. http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201311002.htm
|
[3] |
吴玺泽, 杨春明, 吴华玲, 等.复杂工业过程的运行优化与控制[J].装备制造技术, 2014(9):231-232, 240. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201409087.htm
Wu X Z, Yang C M, Wu H L, et al. Operation optimization and control of complex industrial process[J]. Equipment Manufacturing Technology, 2014(9):231-232, 240. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201409087.htm
|
[4] |
Bamieh B A, Pearson J B. A general framework for linear periodic systems with applications to H∞ sampled-data control[J]. IEEE Transactions on Automatic Control, 1992, 37(4):418-435. doi: 10.1109/9.126576
|
[5] |
Yamamoto Y. New approach to sampled-data control systems-a function space method[C]//Proceedings of the 29th Conference on Decision and Control. Piscataway, NJ, USA:IEEE, 1990:1882-1887.
|
[6] |
Wang G X, Liu Y W, He Z, et al. The lifting technique for sampled-data systems:Useful or useless[J]. Acta Automatica Sinica, 2005, 31(3):491-494. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=moto200503025&dbname=CJFD&dbcode=CJFQ
|
[7] |
Wang G X, Liu Y W, He Z. H∞ design for sampled-data systems via lifting technique:Conditions and limitation[J]. Acta Automatica Sinica, 2006, 32(3):791-795. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=moto200605020&dbname=CJFD&dbcode=CJFQ
|
[8] |
刘艳, 潘丰.丢包网络化控制系统非脆弱量化H∞控制[J].信息与控制, 2016, 45(3):320-327, 334. http://ic.sia.cn/CN/abstract/abstract12420.shtml
Liu Y, Pan F. Non-fragile quantized H∞ control for networked control system with packet dropouts[J]. Information and Control, 2016, 45(3):320-327, 334. http://ic.sia.cn/CN/abstract/abstract12420.shtml
|
[9] |
Naghshtabrizi P, Hespanha J, Teel A. Stability of delay impulsive systems with application to networked control systems[C]//Proceedings of the 26th American Control Conference. New York, USA:IEEE, 2007:4899-4904.
|
[10] |
程培, 邓飞其.具时变时滞的不确定随机系统的脉冲控制[J].应用数学, 2014, 27(3):483-490. http://www.cnki.com.cn/Article/CJFDTOTAL-YISU201403004.htm
Cheng P, Deng F Q. Impulsive control of uncertain stochastic systems with time-varying delay[J]. Mathematica Applicata, 2014, 27(3):483-490. http://www.cnki.com.cn/Article/CJFDTOTAL-YISU201403004.htm
|
[11] |
郭晋秦, 韩焱, 乔俊福, 等.含时变时延的多智能体的包容控制器设计[J].信息与控制, 2016, 45(4):397-401. http://ic.sia.cn/CN/abstract/abstract12432.shtml
Guo J Q, Han Y, Qiao J F, et al. Containment controller design for a multi-agent system with time-varying delays[J]. Information and Control, 2016, 45(4):397-401. http://ic.sia.cn/CN/abstract/abstract12432.shtml
|
[12] |
Naghshtabrizi P, Hespanha J, Teel A. Exponential stability of impulsive systems with application to uncertain sampled-data systems[J]. Systems & Control Letters, 2008, 57(5):378-385. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.8122
|
[13] |
唐斌, 曾启杰, 章云.基于多输入时滞脉冲模型的采样数据控制系统的随机镇定[J].控制理论与应用, 2012, 29(7):899-908. http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201207009.htm
Tang B, Zeng Q J, Zhang Y. Stochastic stabilization of sampled-data control systems based on impulsive model with multiple input delays[J]. Control Theory & Applications. 2012, 29(7):899-908. http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201207009.htm
|
[14] |
Fridman E, Seuret A, Richard J P. Robust sampled-data stabilization of linear systems:An input delay approach[J]. Automatica, 2004, 40(8):1441-1446. doi: 10.1016/j.automatica.2004.03.003
|
[15] |
刘彦文, 许保同, 李平敏.具有输入时滞的不确定采样系统的鲁棒控制[J].控制工程, 2014(S1):146-149, 152. http://www.cnki.com.cn/Article/CJFDTOTAL-JZDF2014S1040.htm
Liu Y W, Xu B T, Li P M. Robust control for uncertain sampled-data system with input delay[J]. Control Engineering of China, 2014(S1):146-149, 152. http://www.cnki.com.cn/Article/CJFDTOTAL-JZDF2014S1040.htm
|
[16] |
Cheng P, Deng F Q, Peng Y J. Robust exponential stability and delayed-state feedback stabilization of uncertain impulsivestochastic systems with time-varying delay[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12):4740-4752. doi: 10.1016/j.cnsns.2012.03.038
|
[17] |
杨春雨, 周林娜, 马小平, 等.产品质量与生产过程的集成控制:双率采样数据方法[J].控制理论与应用, 2013, 30(7):844-849. http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201307009.htm
Yang C Y, Zhou L N, Ma X P, et al. Integrated control of product quality and production process for process industry:Dual-rate sampled-data method[J]. Control Theory & applications, 2013, 30(7):844-849. http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201307009.htm
|
[18] |
Chai T Y, Zhao L, Qiu J B, et al. Integrated network-based model predictive control for setpoints compensation in industrial processes[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1):417-426. doi: 10.1109/TII.2012.2217750
|
[19] |
范家璐, 张也维, 柴天佑.一类工业过程运行反馈优化控制方法[J].自动化学报, 2015, 41(10):1754-1761. http://cdmd.cnki.com.cn/Article/CDMD-10145-1016014085.htm
Fan J L, Zhang Y W, Chai T Y. Optimal operational feedback control for a class of industrial processes[J]. Acta Automatica Sinica, 2015, 41(10):1754-1761. http://cdmd.cnki.com.cn/Article/CDMD-10145-1016014085.htm
|
[20] |
Han S Y, Tang G Y. Optimal tracking control for discrete-time systems with delayed state and input[C]//IEEE ICCA 2010. Piscataway, NJ, USA:IEEE, 2010:1694-1698.
|
[21] |
Kiumarsi B, Lewis F L, Modares H, et al. Optimal tracking control for linear discrete-time systems using reinforcement learning[C]//52nd IEEE Conference on Decision and Control. Piscataway, NJ, USA:IEEE, 2013:3845-3850.
|
[22] |
Kiumarsi B, Lewis F L, Naghibisistani M B, et al. Optimal tracking control of unknown discrete-time linear systems using input-output measured data[J]. IEEE Transactions on Cybernetics, 2015, 45(12):2770-2779. doi: 10.1109/TCYB.2014.2384016
|
[1] | GAO Feng, HUANG Yu-mei, LIU Hong-yan, MINAMI Mamoru. Application of Genetic Algorithm Based on Objective Model to Corridor Recognition[J]. INFORMATION AND CONTROL, 2007, 36(1): 68-73. |
[2] | BAI Yin, SHANG Wen-li, WANG Cheng-en. A Genetic Algorithm for Job-shop Scheduling Problem with Alternative Machine[J]. INFORMATION AND CONTROL, 2004, 33(5): 604-608. |
[3] | BAI Yin, SHANG Wen-li, WANG Cheng-en. A Genetic Algorithm for Job-shop Scheduling Problem with Alternative Machine[J]. INFORMATION AND CONTROL, 2004, 33(5): 604-608. |
[4] | LIU Rui-guo, SHAO Cheng. A MODIFIED GENETIC ALGORITHM WITH ADAPTIVE ADJUSTMENT OF PARAMETERS[J]. INFORMATION AND CONTROL, 2003, 32(6): 556-560. |
[5] | PAN Quan-ke, SUN Zhi-jun, ZHU Jian-ying. AN INTELLIGENT SCHEDULING OPTIMIZATION OF JOB-SHOP WITH ALTERNATIVE MACHINES[J]. INFORMATION AND CONTROL, 2002, 31(3): 216-218. |
[6] | YU Wen, LI Ren-hou. A MULTIMODAL PARTHENO-GENETIC ALGORITHM[J]. INFORMATION AND CONTROL, 2001, 30(5): 470-473. |
[7] | GU Qingming, SONG Wenzhong. A HYBRID GENETIC ALGORITHM FOR JOB SHOP SCHEDULING PROBLEM[J]. INFORMATION AND CONTROL, 1998, 20(5): 369-374. |
[8] | JI Shuxin, QIAN Jixin, SUN Youxian. A STUDY OF CODING IN GENETIC ALGORITHMS APPLIED TO JOB SHOP SCHEDULING[J]. INFORMATION AND CONTROL, 1997, 26(5): 393-400. |
[9] | WANG Li, WANG Mengguang. A GENETIC ALGORITHM FOR FLOW SHOP WITH MULTIPLE PROCESSORS[J]. INFORMATION AND CONTROL, 1997, 26(4): 296-300. |
[10] | CNEN Genshe, CNEN Xinhai. ADVANCES IN GENETIC ALGORITHMS[J]. INFORMATION AND CONTROL, 1994, 23(4): 215-222. |