Citation: | MEI Zhuang, CHEN Yang, ZHANG Silun, ZHENG Xiujuan, WU Huaiyu. Path Planning for Mobile Robots Based on Continuous Dynamic Movement Primitives[J]. INFORMATION AND CONTROL, 2019, 48(4): 392-400. DOI: 10.13976/j.cnki.xk.2019.8552 |
Aiming at the problem of mobile robot path planning in two-dimensional dynamic scenes, we propose a novel path-planning method, called continuous dynamic movement primitives(CDMPs). The method is an extension of the traditional dynamic movement primitives. By learning the motion trajectory of the demonstration, we obtain the weight sequence of each movement primitive. We can track unknown dynamic targets by updating the phase variables. The method overcomes the dependence of mobile robots on the environment model and solves the path-planning problem of tracking moving targets and avoiding dynamic obstacles in dynamic scenes. Finally, through a series of simulation experiments, the feasibility of the algorithm is verified. The simulation results show that the CDMPs algorithm has better continuous performance and planning efficiency than the traditional DMPs method for mobile robot path planning in dynamic scenes.
[1] |
Hossain M A, Ferdous I. Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique[J]. Robotics and Autonomous Systems, 2015, 64:137-141. doi: 10.1016/j.robot.2014.07.002
|
[2] |
夏春蕊, 王瑞, 李晓娟, 等.动态环境下基于概率模型检测的路径规划方法[J].计算机工程与应用, 2016, 52(12):5-11. doi: 10.3778/j.issn.1002-8331.1407-0307
Xia C R, Wang R, Li X J, et al. Path planning method based on probabilistic model detection in dynamic environment[J]. Computer Engineering and Applications, 2016, 52(12):5-11. doi: 10.3778/j.issn.1002-8331.1407-0307
|
[3] |
陈彦杰, 王耀南, 谭建豪, 等.局部环境增量采样的服务机器人路径规划[J].仪器仪表学报, 2017, 38(5):1093-1100. doi: 10.3969/j.issn.0254-3087.2017.05.007
Chen Y J, Wang Y N, Tan J H, et al. Path planning of service robots with incremental sampling in local environment[J]. Chinese Journal of Scientific Instrument, 2017, 38(5):1093-1100. doi: 10.3969/j.issn.0254-3087.2017.05.007
|
[4] |
王国芳.专家知识辅助的强化学习研究及其在无人机路径规划中的应用[D].杭州: 浙江大学, 2017.
Wang G F. Expert knowledge-assisted reinforcement learning research and its application in UAV path planning[D]. Hangzhou: Zhejiang University, 2017
|
[5] |
陈洋, 张道辉, 赵新刚, 等.基于IHDR自主学习框架的无人机3维路径规划[J].机器人, 2012, 34(5):513-518. http://d.old.wanfangdata.com.cn/Periodical/jqr201205001
Yang C, Zhang D, Zhao X, et al. UAV 3D path planning based on IHDR autonomous-learning-framework[J]. Robot, 2012, 34(5):513-518. http://d.old.wanfangdata.com.cn/Periodical/jqr201205001
|
[6] |
Krug R, Dimitrov D. Model predictive motion control based on generalized dynamical movement primitives[J]. Journal of Intelligent&Robotic Systems, 2015, 77(1):17-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6278ea56da705a995a9481141cdf5dc7
|
[7] |
Ijspeert A J, Nakanishi J, Schaal S. Trajectory formation for imitation with nonlinear dynamical systems[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2001: 752-757.
|
[8] |
Gams A, Asfour T, Morimoto J. Task-specific generalization of discrete and periodic dynamic movement primitives[J]. IEEE Transactions on Robotics, 2010, 26(5):800-815. doi: 10.1109/TRO.2010.2065430
|
[9] |
Ijspeert A J, Nakanishi J, Hoffmann H, et al. Dynamical movement primitives:Learning attractor models for motor behaviors[J]. Neural Computation, 2013, 25(2):328-373. doi: 10.1162/NECO_a_00393
|
[10] |
姜明浩, 陈洋, 李威凌.基于动态运动基元的移动机器人路径规划[J].高技术通讯, 2016, 26(12):997-1005. doi: 10.3772/j.issn.1002-0470.2016.12.009
Jiang M H, Chen Y, Li W L. Path planning of a mobile robot based on dynamic movement primitives[J]. High Technology Letters, 2016, 26(12):997-1005. doi: 10.3772/j.issn.1002-0470.2016.12.009
|
[11] |
姚峰, 刘崇德, 王玉甲, 等.基于动态运动基元的轨迹学习方法[J].机器人, 2018, 40(4):560-568. http://d.old.wanfangdata.com.cn/Periodical/jqr201804020
Yao F, Liu C D, Wang Y J, et al. Trajectory learning based on dynamic movement primitives[J]. Robot, 2018, 40(4):560-568. http://d.old.wanfangdata.com.cn/Periodical/jqr201804020
|
[12] |
Fu J, Wei D. An improved LWR based forcing term learning from DMPs[C]//International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration. Piscataway, NJ, USA: IEEE, 2017: 241-245.
|
[13] |
Hoffmann H, Pastor P, Park D H, et al. Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2009: 1534-1539.
|
[14] |
Fajen B R, Warren W H, Temizer S, et al. A dynamical model of visually-guided steering, obstacle avoidance, and route selection[J]. Journal of Experimental Psychology Human Perception&Performance, 2003, 54(1/2/3):13-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64cd358e049e30b92396783929ea9390
|
[15] |
Rai A, Meier F, Ijspeert A, et al. Learning coupling terms for obstacle avoidance[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, NJ, USA: IEEE, 2014: 512-518.
|
[16] |
Gams A, Denisa M, Ude A. Learning of parametric coupling terms for robot-environment interaction[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, NJ, USA: IEEE, 2015: 304-309.
|
[17] |
Rai A, Sutanto G, Schaal S, et al. Learning feedback terms for reactive planning and control[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2017: 2184-2191.
|
[18] |
Chen C, Yang C, Zeng C, et al. Robot learning from multiple demonstrations with dynamic movement primitive[C]//International Conference on Advanced Robotics and Mechatronics. 2017: 523-528.
|
[19] |
Mei Z, Chen Y, Jiang M, et al. Mobile robots path planning based on dynamic movement primitives library[C]//Chinese Control Conference. Piscataway, NJ, USA: IEEE, 2017: 6906-6911.
|
[20] |
Kardan I, Akbarzadeh A, Mohammadi A M. Real-time velocity scaling and obstacle avoidance for industrial robots using fuzzy dynamic movement primitives and virtual impedances[J]. Industrial Robot, 2017, 45(3):110-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1971e51c00902a83f340138718857dcb
|
[21] |
Ijspeert A J, Nakanishi J, Hoffmann H, et al. Dynamical movement primitives:Learning attractor models for motor behaviors[J]. Neural Computation, 2013, 25(2):328-373. doi: 10.1162/NECO_a_00393
|
[22] |
Chen Y, Han J, Zhao X. Three-dimensional path planning for unmanned aerial vehicle based on linear programming[J]. Robotica, 2012, 30(5):773-781. doi: 10.1017/S0263574711000993
|
[23] |
Amir M G E, Ragaglia M. Robot learning from demonstrations:Emulation learning in environments with moving obstacles[J]. Robotics&Autonomous Systems, 2018, 101:45-56.
|