Citation: | CHEN Xiang, LIU Qinming, HU Jiarui. Bearing Fault Diagnosis and Life Prediction Based on Attention Mechanism and Long Short-term Memory Network under Multi-source Sensor Data[J]. INFORMATION AND CONTROL, 2024, 53(2): 211-225. DOI: 10.13976/j.cnki.xk.2023.3056 |
To solve the problem of the poor diagnosis effect of rolling bearing faults in noisy environments, we propose a new bearing fault diagnosis method based on an attention mechanism and a long short-term memory (LSTM) network using multisource sensor data. First, we normalize the one-dimensional (1D) data collected by multisource sensors and then construct a double-channel twin convolutional network with adaptive batch normalization technology to extract effective features and perform data fusion. Second, the fusion data are input into the improved 1D coordinate attention (CoordAtt) which is capable of considering the relationship between channels and position information simultaneously. Third, we use the LSTM layer to extract time features and evaluate the diagnosis effect by the loss function after label smoothing regularization. We use the new optimizer Adan for optimization. Finally, the diagnosis model is applied to a test set, and the diagnosis results of fault categories are output. We compare the diagnostic accuracy of the model under different test set ratios, determine that the optimal ratio is 0.[KG-*5]3, and test it in a noisy environment. The experimental results show that the proposed method can better resist the influence of noisy environments. The validity of the CoordAtt-LSTM model in life prediction is verified by experimental results on the C-MAPSS dataset.
[1] |
SHAO H, CHENG J, JIANG H, et al. Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing[J/OL]. Knowledge-Based Systems, 2019, 188[2022-12-20]. https://www.sciencedirect.com/science/article/pii/S0950705119304289. DOI: 10.1016/j.knosys.2019.105022.
|
[2] |
SAMANTA B, AL-BALUSHI KR. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features[J]. Mechanical Systems & Signal Processing, 2003, 17(2): 317-328.
|
[3] |
YU Y, YU D, CHENG J. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM[J]. Measurement, 2007, 40(9/10): 943-950.
|
[4] |
WIJAYASEKARA D, LINDA O, MANIC M, et al. FN-DFE: Fuzzy-neural data fusion engine for enhanced resilient state-awareness of hybrid energy systems[J]. IEEE Transactions on Cybernetics, 2014, 44(11): 2065-2075. . doi: 10.1109/TCYB.2014.2323891
|
[5] |
陈扬, 刘勤明, 梁耀旭. 小样本不平衡设备数据下的机器学习策略研究[J]. 上海理工大学学报, 2022, 44(4): 407-416. https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY202204013.htm
CHEN Y, LIU Q M, LIANG Y X. Research on machine learning strategies based on small sample unbalanced device data[J]. Journal of University of Shanghai for Science and Technology, 2022, 44(4): 407-416. https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY202204013.htm
|
[6] |
汪祖民, 张志豪, 秦静, 等. 基于卷积神经网络的机械故障诊断技术综述[J]. 计算机应用, 2022, 42(4): 1036-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202204006.htm
WANG Z M, ZHANG Z H, QIN J, et al. A survey of mechanical fault diagnosis technology based on convolutional neural network[J]. Computer Applications, 2022, 42(4): 1036-1043. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202204006.htm
|
[7] |
胡春生, 李国利, 赵勇, 等. 变工况滚动轴承故障诊断方法综述[J]. 计算机工程与应用, 2022, 58(18): 26-42. doi: 10.3778/j.issn.1002-8331.2202-0008
HU C S, LI G L, ZHAO Y, et al. Overview of fault diagnosis methods for rolling bearings under variable conditions[J]. Computer Engineering and Applications, 2022, 58(18): 26-42. doi: 10.3778/j.issn.1002-8331.2202-0008
|
[8] |
陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17): 91-107. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017010.htm
CHEN S J, PENG Z K, ZHOU P. Review of signal decomposition and its application in mechanical fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2020, 56(17): 91-107. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017010.htm
|
[9] |
文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001023.htm
Wen C L, LYU F Y. A survey of fault diagnosis methods based on deep learning[J]. Journal of Electronics and Information Technology, 2020, 42(1): 234-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001023.htm
|
[10] |
吴定海, 任国全, 王怀光, 等. 基于卷积神经网络的机械故障诊断方法综述[J]. 机械强度, 2020, 42(5): 1024-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202005002.htm
WU D H, REN G Q, WANG H G, et al. Overview of mechanical fault diagnosis methods based on convolutional neural network[J]. Journal of Mechanical Strength, 2020, 42(5): 1024-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202005002.htm
|
[11] |
叶壮, 余建波. 基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法[J]. 振动与冲击, 2020, 39(20): 55-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202020009.htm
YE Z, YU J B. Gearbox fault diagnosis method based on multi-channel one-dimensional convolutional neural network feature learning[J]. Journal of Vibration and Shock, 2020, 39(20): 55-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202020009.htm
|
[12] |
CHEN Z, GRYLLIAS K, LI W. Intelligent fault diagnosis for rotary machinery using transferable convolutional neural network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 339-349. doi: 10.1109/TII.2019.2917233
|
[13] |
丁承君, 冯玉伯, 王曼娜. 基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击, 2021, 40(2): 287-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202102039.htm
DING C J, FENG Y B, WANG M N. Rolling bearing fault diagnosis based on variational mode decomposition and deep convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(2): 287-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202102039.htm
|
[14] |
缪昭明, 袁宪锋, 张晖, 等. 基于SE-CNN的服务机器人运动系统云端故障诊断方法[J]. 机器人, 2021, 43(3): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR202103007.htm
MIAO Z M, YUAN X F, ZHANG H, et al. Cloud fault diagnosis method of service robot motion system based on SE-CNN[J]. Robot, 2021, 43(3): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR202103007.htm
|
[15] |
孙岩, 彭高亮. 改进胶囊网络的滚动轴承故障诊断方法[J]. 哈尔滨工业大学学报, 2021, 53(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202101004.htm
SUN Y, PENG G L. Rolling bearing fault diagnosis method based on improved capsule network[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202101004.htm
|
[16] |
ZHANG X, HE C, LU Y, et al. Fault diagnosis for small samples based on attention mechanism[J/OL]. Measurement, 2022, 187[2023-02-18]. https://www.sciencedirect.com/science/article/pii/S0263224121011507. DOI: 10.1016/j.measurement.2021.110242.
|
[17] |
程建刚, 毕凤荣, 张立鹏, 等. 基于多重注意力-卷积神经网络-双向门控循环单元的机械故障诊断方法研究[J]. 内燃机工程, 2021, 42(4): 77-83, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG202104014.htm
CHENG J G, BI F R, ZHANG L P, et al. Research on mechanical fault diagnosis based on multiple attention-convolutional neural networks-bidirectional gated cycle unit[J]. Chinese Internal Combustion Engine Engineering, 2021, 42(4): 77-83, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG202104014.htm
|
[18] |
TAO J, LIU Y L, YANG D L, et al. Bearing fault diagnosis based on deep belief network and multisensor information fusion[J]. Shock and Vibration, 2016, 2016[2023-02-05]. https://downloads.hindawi.com/journals/sv/2016/9306205.pdf. DOI: 10.1155/2016/9306205.
|
[19] |
WANG H, LI S, SONG L, et al. A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals[J]. Computers in Industry, 2019, 105: 182-190. doi: 10.1016/j.compind.2018.12.013
|
[20] |
杨洁, 万安平, 王景霖, 等. 基于多传感器融合卷积神经网络的航空发动机轴承故障诊断[J]. 中国电机工程学报, 2022, 42(13): 4933-4942. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202213028.htm
Yang J, Wan A P, Wang J L, et al. Aero-engine bearing fault diagnosis based on multi-sensor fusion convolutional neural network[J]. Proceedings of the CSEE, 2022, 42(13): 4933-4942. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202213028.htm
|
[21] |
LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. . doi: 10.1162/neco.1989.1.4.541
|
[22] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 60(6): 84-90.
|
[23] |
LI Y, WANG N, SHI J, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109-117. doi: 10.1016/j.patcog.2018.03.005
|
[24] |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2021: 13713-13722.
|
[25] |
DONG Y, LI Y, ZHENG H, et al. A new dynamic model and transfer learning based intelligent fault diagnosis framework for rolling element bearings race faults: Solving the small sample problem[J]. ISA Transactions, 2022, 121: 327-348.
|
[26] |
赵志宏, 李晴, 李春秀. 基于卷积GRU注意力的设备剩余寿命预测[J]. 振动、测试与诊断, 2022, 42(3): 572-579, 622. https://www.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=GCKZ202307001197&dbname=IPFDLAST2023
ZHAO Z H, LI Q, LI C X. Residual life prediction of equipment based on convolutional GRU attention[J]. Journal of Vibration, Measurement and Diagnosis, 2022, 42(3): 572-579, 622. https://www.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=GCKZ202307001197&dbname=IPFDLAST2023
|
[27] |
ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]//IEEE International Conference on Prognostics and Health Management. Piscataway, USA: IEEE, 2017: 88-95.
|
[28] |
ZHANG C, LIM P, QIN A K, et al. Multi-objective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(10): 2306-2318.
|
[29] |
SATEESH BABU G, ZHAO P, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//International Conference on Database Systems for Advanced Applications. Berlin, Germany: Springer, 2016: 214-228.
|
[1] | ZHU Zhenyu, GAO Dexin. Joint Estimation Method of State of Health and Remaining Useful Life for Lithium-ion Batteries Based on Hybrid Networks[J]. INFORMATION AND CONTROL, 2024, 53(1): 120-128. DOI: 10.13976/j.cnki.xk.2023.2378 |
[2] | QIU Jier, TAO Hongfeng, CHENG Long, SHENG Linzhi. Bearing Fault Diagnosis Based on Self-attention Mechanism ACGAN[J]. INFORMATION AND CONTROL, 2022, 51(6): 753-762. DOI: 10.13976/j.cnki.xk.2022.2002 |
[3] | GAO De-xin, LIU Xin, YANG Qing. Remaining Useful Life Prediction of Lithium-Ion Battery Based on CNN and BiLSTM Fusion[J]. INFORMATION AND CONTROL, 2022, 51(3): 318-329, 360. DOI: 10.13976/j.cnki.xk.2022.1205 |
[4] | ZHU Kaiqiang, LU Ningyun, JIANG Bin. Remaining Useful Life Prediction of High-speed Railway Traction System Based on Performance Degradation[J]. INFORMATION AND CONTROL, 2020, 49(3): 335-342. DOI: 10.13976/j.cnki.xk.2020.9365 |
[5] | HU Changhua, SHI Quan, SI Xiaosheng, ZHANG Zhengxin. Data-driven Life Prediction and Health Management: State of the Art[J]. INFORMATION AND CONTROL, 2017, 46(1): 72-82. DOI: 10.13976/j.cnki.xk.2017.0072 |
[6] | ZHOU Zhi-jie, HU Chang-hua, ZHOU Dong-hua. Fault Prediction Techniques for Dynamic Systems Based on Non-analytical Model[J]. INFORMATION AND CONTROL, 2006, 35(5): 608-613. |
[7] | XU Bo, YU Jin-song, LI Xing-shan. Intelligent Fault Diagnosis for Complex System[J]. INFORMATION AND CONTROL, 2004, 33(1): 56-60. |
[8] | XU Bo, YU Jin-song, LI Xing-shan. Intelligent Fault Diagnosis for Complex System[J]. INFORMATION AND CONTROL, 2004, 33(1): 56-60. |
[9] | GUO Qi-yi, CHEN Bang-xing, LU Gui-zhang, ZHAO Xin. DETECTION STRATEGY FOR FAULT DIAGNOSIS[J]. INFORMATION AND CONTROL, 2000, 29(3): 230-235. |
[10] | QIAN Daqun, ZHANG Zhongjun. A GENERAL DIRECTED—GRAPH ALGORITHM FOR FAULT DIAGNOSIS[J]. INFORMATION AND CONTROL, 1989, 18(6): 1-4. |