FAN Huijie, YU Hang, ZHAO Yingchang, TANG Yandong. Review of Visual-infrared Cross-modal Person Re-identification Methods[J]. INFORMATION AND CONTROL, 2025, 54(1): 50-65. DOI: 10.13976/j.cnki.xk.2024.4041
Citation: FAN Huijie, YU Hang, ZHAO Yingchang, TANG Yandong. Review of Visual-infrared Cross-modal Person Re-identification Methods[J]. INFORMATION AND CONTROL, 2025, 54(1): 50-65. DOI: 10.13976/j.cnki.xk.2024.4041

Review of Visual-infrared Cross-modal Person Re-identification Methods

More Information
  • Received Date: February 01, 2024
  • Revised Date: August 25, 2024
  • Accepted Date: July 22, 2024
  • Visible-infrared cross-modality person re-identification technology has garnered wide attention for its ability to provide round-the-clock monitoring regardless of nighttime conditions. We aim to help researchers find suitable solutions by analyzing existing methods, their applicable scenarios, and the advantages and disadvantages of different algorithms. Additionally, We seek to identify current challenges and explores future directions for visible-infrared cross-modality person re-identification. We first introduce the concept of person re-identification, review its development, and highlight the significance of visible-infrared cross-modality person re-identification. Subsequently, it categorizes research methods into basic methods, auxiliary model, unsupervised methods, and video-based approaches, analyzing their applicable scenarios, advantages, disadvantages, and potential future research directions. We also discuss current evaluation metrics and existing datasets for visible-infrared cross-modality person re-identification, analyzing the strengths and weaknesses of each dataset. Finally, We discuss the future prospects in this area.

  • [1]
    ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: Past, present and future[EB/OL]. [2023-06-02]. https://arxiv.org/abs/1610.02984. DOI: 10.48550/arXiv.1610.02984.
    [2]
    HUANG T, RUSSELL S. Object identification in a Bayesian context[C]//International Joint Conference on Artificial Intelligence. New York, USA: ACM, 1997: 1276-1282.
    [3]
    ZAJDEL W, ZIVKOVIC Z, KROSE B J A. Keeping track of humans: Have I seen this person before?[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2005: 2081-2086.
    [4]
    YI D, LEI Z, LIAO S, et al. Deep metric learning for person re-identification[C]//22nd International Conference on Rattern Recognition. Piscataway, USA: IEEE, 2014: 34-39.
    [5]
    BAI X, YANG M, HUANG T, et al. Deep-person: Learning discriminative deep features for person re-identification[J/OL]. Pattern Recognition, 2020[2023-11-02]. https://www.sciencedirect.com/science/article/pii/S0031320319303395. DOI: 10.1016/j.patcog.2019.107036.
    [6]
    LIN Y, ZHENG L, ZHENG Z, et al. Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151-161. doi: 10.1016/j.patcog.2019.06.006
    [7]
    WEI P, ZHANG C, TANG Y, et al. Reinforced domain adaptation with attention and adversarial learning for unsupervised person ReID[J]. Applied Intelligence, 2023, 53(4): 4109-4123. doi: 10.1007/s10489-022-03640-y
    [8]
    GU X, CHANG H, MA B, et al. Clothes-changing person re-identification with rgb modality only[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2022: 1060-1069.
    [9]
    WANG G, YANG S, LIU H, et al. High-order information matters: Learning relation and topology for occluded person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2020: 6449-6458.
    [10]
    叶钰, 王正, 梁超, 等. 多源数据行人重识别研究综述[J]. 自动化学报, 2020, 46(9): 1869-1884.

    YE Y, WANG Z, LIANG C, et al. A survey on multi-source person re-identification[J]. Acta Automatica Sinica, 2020, 46(9): 1869-1884.
    [11]
    YE M, SHEN J, LIN G, et al. Deep learning for person re-identification: A survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(6): 2872-2893.
    [12]
    管宇, 陈希爱, 田建东, 等. 基于多曝光图像生成的低照度图像增强[J]. 机器人, 2023, 45(4): 422-430.

    GUAN Y, CHEN X A, TIAN J D, et al. Low-light image enhancement based on multi-exposure images generation[J]. Robot, 2023, 45(4): 422-430.
    [13]
    彭锦佳, 宋鹏鹏, 王辉兵. 面向隐私保护的联都域锐化行人重识别方法[J]. 模式识别与人工智能, 2023, 36(7): 634-646.

    PENG J J, SONG P P, WANG H B. Federated domain generalization person re-identification with privacy preserving[J]. Pattern Recognition and Artifical Intelligence, 2023, 36(7): 634-646.
    [14]
    姚足, 龚勋, 陈锐, 等. 面向行人重识别的局部特征研究进展, 挑战与展望[J]. 自动化学报, 2021, 47(12): 2742-2760.

    YAO Z, GONG X, CHEN R, et al. Research progress, challenge and prospect of local features for person re-Identification[J]. Acta Automatica Sinica, 2021, 47(12): 2742-2760.
    [15]
    LIU X, ZHANG P, YU C, et al. Watching you: Global-guided reciprocal learning for video-based person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2021: 13334-13343.
    [16]
    周勇, 王瀚正, 赵佳琦, 等. 基于可解释注意力部件模型的行人重识别方法[J]. 自动化学报, 2023, 49(10): 2159-2171.

    ZHOU Y, WANG H Z, ZHAO J Q, et al. Interpretable attention part model for person re-identification[J]. Acta Automatica Sinica, 2023, 49(10): 2159-2171.
    [17]
    REN M, HE L, LIAO X, et al. Learning instance-level spatial-temporal patterns for person re-identification[C]//IEEE/CVF International Conference on Computer Vision. Piscataway, USA: IEEE, 2021: 14930-14939.
    [18]
    WU A, ZHENG W S, YU H X, et al. RGB-infrared cross-modality person re-identification[C]//IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2017: 5380-5389.
    [19]
    BAK S, ZAIDENBERG S, BOULAY B, et al. Improving person re-identification by viewpoint cues[C]//11th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway, USA: IEEE, 2014: 175-180.
    [20]
    LI X, ZHENG W S, WANG X, et al. Multi-scale learning for low-resolution person re-identification[C]//IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2015: 3765-3773.
    [21]
    CHO Y J, YOON K J. Improving person re-identification via pose-aware multi-shot matching[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016: 1354-1362.
    [22]
    HUANG H, LI D, ZHANG Z, et al. Adversarially occluded samples for person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2018: 5098-5107.
    [23]
    LIU M, ZHANG Y, LI H. Survey of cross-modal person re-identification from a mathematical perspective[J]. Mathematics, 2023, 11(3): 654-658. doi: 10.3390/math11030654
    [24]
    周非, 舒浩峰, 白梦林, 等. 生成对抗网络协同角度异构中心三元组损失的跨模态行人重识别[J]. 电子学报, 2023, 51(7): 1803-1811.

    ZHOU F, SHU H F, BAI M L, et al. Cross-modal person re-identification based on generative adversarial network coordinated with angle based heterogeneous center triplet loss[J]. Acta Electronica Sinica, 2023, 51(7): 1803-1811.
    [25]
    万磊, 李华锋, 张亚飞. 多模态特征融合和自蒸馏的红外- 可见光行人重识别[J/OL]. 计算机辅助设计与图形学学报, 2024[2024-04-26]. https://www.jcad.cn/cn/article/id/01ea269a-2c53-4c9e-8e24-dca9ce886115.

    WAN L, LI H F, ZHANG Y F. Infrared-visible person re-identification via multi-modality feature fusion and self-distillation[J/OL]. Journal of Computer-Aided Design & Computer Graphics, 2024[2024-04-26]. https://www.jcad.cn/cn/article/id/01ea269a-2c53-4c9e-8e24-dca9ce886115.
    [26]
    孙锐, 张磊, 余益衡, 等. 基于局部异构聚合图卷积网络的跨模态行人重识别[J]. 电子学报, 2023, 51(4): 810-825.

    SUN R, ZHANG L, YU Y H, et al. Cross-modality person re-identification based on locally heterogeneous polymerization graph convolutional network[J]. Acta Electronica Sinica, 2023, 51(4): 810-825.
    [27]
    冯素坤, 王志全. 公共安全治理中可疑目标变形Transformer跟踪器[J]. 信息与控制, 2024, 53(1): 98-107. doi: 10.13976/j.cnki.xk.2024.3465

    FENG S K, WANG Z Q. Suspicious target Transformer tracker in public security governance[J]. Information and Control, 2024, 53(1): 98-107. doi: 10.13976/j.cnki.xk.2024.3465
    [28]
    闫於虎, 王永雄, 潘志群. 结合Transformer的显著性目标检测[J]. 信息与控制, 2023, 52(3): 382-390. doi: 10.13976/j.cnki.xk.2023.2119

    YAN Y H, WANG Y X, PAN Z Q. Salient object detection with Transformer[J]. Information and Control, 2023, 52(3): 382-390. doi: 10.13976/j.cnki.xk.2023.2119
    [29]
    王晋溪, 鲁鸣鸣. 基于场景图知识的文本到图像行人重识别[J]. 模式识别与人工智能, 2024, 37(11): 947-959.

    WANG J X, LU M M. Scence graph knowledge based text-to-image person re-identification[J]. Pattern Recognition and Artificial Intelligence, 2024, 37(11): 947-959.
    [30]
    葛斌, 卢洋, 夏晨辰, 等. 基于文本图像互学习的换衣行人重识别方法[J]. 模式识别与人工智能, 2024, 37(11): 960-973.

    GE B, LU Y, XIA C C, et al. Clothes-changing person re-identification method based on text-image mutual learning[J]. Pattern Recognition and Artificial Intelligence, 2024, 37(11): 960-973.
    [31]
    ZHANG Y, ZHAO S, KANG Y, et al. Modality synergy complement learning with cascaded aggregation for visible-infrared person re-identification[C]//17th European Conference on Computer Vision. New York, USA: the ACM, 2022: 462-479.
    [32]
    LIU J, SUN Y, ZHU F, et al. Learning memory-augmented unidirectional metrics for cross-modality person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: 2022: 19366-19375.
    [33]
    ZHANG Q, LAI C, LIU J, et al. Fmcnet: Feature-level modality compensation for visible-infrared person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2022: 7349-7358.
    [34]
    HUANG Z, LIU J, LI L, et al. Modality-adaptive mixup and invariant decomposition for RGB-infrared person re-identification[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2022: 1034-1042.
    [35]
    JIANG K, ZHANG T, LIU X, et al. Cross-modality transformer for visible-infrared person re-identification[C]//17th European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 480-496.
    [36]
    SUN Z, ZHAO F. Counterfactual attention alignment for visible-infrared cross-modality person re-identification[J]. Pattern Recognition Letters, 2023, 168: 79-85. doi: 10.1016/j.patrec.2023.03.008
    [37]
    MUKHTAR H, KHAN M U G. CMOT: A cross-modality transformer for RGB-D fusion in person re-identification with online learning capabilities[J/OL]. Knowledge-Based Systems, 2024[2024-05-12]. https://www.sciencedirect.com/science/article/pii/S095070512300905X. DOI: 10.1016/j.knosys.2023.111155.
    [38]
    ZHENG X, HUANG X, JI C, et al. Multi-modal person re-identification based on transformer relational regularization[J/OL]. Information Fusion, 2024[2024-05-20]. https://www.sciencedirect.com/science/article/pii/S156625352300444X. DOI: 10.1016/j.inffus.2023.102128.
    [39]
    CHAI Z, LING Y, LUO Z, et al. Dual-stream transformer with distribution alignment for visible-infrared person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6764-6776. . doi: 10.1109/TCSVT.2023.3268080
    [40]
    杜鹏, 宋永红, 张鑫瑶. 基于自注意力模态融合网络的跨模态行人再识别方法研究[J]. 自动化学报, 2022, 48(6): 1457-1468.

    DU P, SONG Y H, ZHANG X Y. Self-attention cross-modality fusion network for cross-modality person re-identification[J]. Acta Automatica Sinica, 2022, 48(6): 1457-1468.
    [41]
    YE M, SHEN J, SHAO L. Visible-infrared person re-identification via homogeneous augmented tri-modal learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 728-739. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9115075
    [42]
    WANG Z, WANG Z, ZHENG Y, et al. Learning to reduce dual-level discrepancy for infrared-visible person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2019: 618-626.
    [43]
    YE M, RUAN W, DU B, et al. Channel augmented joint learning for visible-infrared recognition[C]//IEEE/CVF International Conference on Computer Vision. Piscataway, USA: IEEE, 2021: 13567-13576.
    [44]
    LI D, WEI X, HONG X, et al. Infrared-visible cross-modal person re-identification with an x modality[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2020: 4610-4617.
    [45]
    WEI Z, YANG X, WANG N, et al. Syncretic modality collaborative learning for visible infrared person re-identification[C]//IEEE/CVF International Conference on Computer Vision. Piscataway, USA: IEEE, 2021: 225-234.
    [46]
    WANG G A, ZHANG T, YANG Y, et al. Cross-modality paired-images generation for RGB-infrared person re-identification[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2020: 12144-12151.
    [47]
    霍东东, 杜海顺. 基于通道重组和注意力机制的跨模态行人重识别[J]. 激光与光电子学进展, 2023, 60(14): 1417-1429.

    HUO D D, DU H S. Cross-modal person re-identification based on channel reorganization and attention mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(14): 1417-1429.
    [48]
    FU C, HU Y, WU X, et al. CM-NAS: Cross-modality neural architecture search for visible-infrared person re-identification[C]//IEEE/CVF International Conference on Computer Vision. Piscataway, USA: IEEE, 2021: 11823-11832.
    [49]
    YE M, SHEN J, J. CRANDALL D, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]//16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 229-247.
    [50]
    CHOI S, LEE S, KIM Y, et al. Hi-CMD: Hierarchical cross-modality disentanglement for visible-infrared person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2020: 10257-10266.
    [51]
    CHAN S, DU F, TANG T, et al. Parameter sharing and multi-granularity feature learning for cross-modality person re-identification[J]. Complex & Intelligent Systems, 2024, 10(1): 949-962.
    [52]
    HAO X, ZHAO S, YE M, et al. Cross-modality person re-identification via modality confusion and center aggregation[C]//IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2021: 16403-16412.
    [53]
    PARK H, LEE S, LEE J, et al. Learning by aligning: Visible-infrared person re-identification using cross-modal correspondences[C]//IEEE/CVF international conference on computer vision. Piscataway, USA: IEEE, 2021: 12046-12055.
    [54]
    WU Q, DAI P, CHEN J, et al. Discover cross-modality nuances for visible-infrared person re-identification[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2021: 4330-4339.
    [55]
    HUANG N, LIU J, LUO Y, et al. Exploring modality-shared appearance features and modality-invariant relation features for cross-modality person re-identification[J/OL]. Pattern Recognition, 2023[2023-11-10]. https://www.sciencedirect.com/science/article/pii/S0031320322006240. DOI: 10.1016/j.patcog.2022.109145.
    [56]
    CHENG D, WANG X, WANG N, et al. Cross-modality person re-identification with memory-based contrastive embedding[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2023: 425-432.
    [57]
    LIANG T, JIN Y, LIU W, et al. Cross-modality Transformer with modality mining for visible-infrared person re-identification[J]. IEEE Transactions on Multimedia, 2023, 25: 8432-8444. doi: 10.1109/TMM.2023.3237155
    [58]
    LU H, ZOU X, ZHANG P. Learning progressive modality-shared transformers for effective visible-infrared person re-identification[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2023, 37(2): 1835-1843.
    [59]
    ZHENG L, HUANG Y, LU H, et al. Pose-invariant embedding for deep person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(9): 4500-4509. doi: 10.1109/TIP.2019.2910414
    [60]
    MIAO Y, HUANG N, MA X, et al. On exploring pose estimation as an auxiliary learning task for visible-infrared person re-identification[J/OL]. Neurocomputing, 2023[2023-11-09]. https://www.sciencedirect.com/science/article/pii/S0925231223007750. DOI: 10.1016/j.neucom.2023.126652.
    [61]
    WAN L, SUN Z, JING Q, et al. G2DA: Geometry-guided dual-alignment learning for RGB-infrared person re-identification[J/OL]. Pattern Recognition, 2023[2023-11-10]. https://www.sciencedirect.com/science/article/pii/S003132032200629X. DOI: 10.1016/j.patcog.2022.109150.
    [62]
    CUI J, CHAN S, MU P, et al. Pure detail feature extraction network for visible-infrared re-identification[J/OL]. Intelligent Automation & Soft Computing[2024-01-21]. https://www.techscience.com/iasc/v37n2/53259/html. DOI: 10.32604/iasc.2023.039894.
    [63]
    CHEN C, YE M, QI M, et al. Structure-aware positional transformer for visible-infrared person re-identification[J]. IEEE Transactions on Image Processing, 2022, 31: 2352-2364. doi: 10.1109/TIP.2022.3141868
    [64]
    FENG J, WU A, ZHENG W. Shape-erased feature learning for visible-infrared person re-identification[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2023: 22752-22761.
    [65]
    HUANG H, YANG W, LIN J, et al. Improve person re-identification with part awareness learning[J]. IEEE Transactions on Image Processing, 2020, 29: 7468-7481. doi: 10.1109/TIP.2020.3003442
    [66]
    WANG X, LIU M, WANG F, et al. Relation-preserving feature embedding for unsupervised person re-identification[J]. IEEE Transactions on Multimedia, 2023, 26: 714-723.
    [67]
    YANG L. Continuous epoch distance integration for unsupervised person re-identification[C]//5th International Conference on Communications, Information System and Computer Engineering. Piscataway, USA: IEEE, 2023: 464-469.
    [68]
    LAN L, TENG X, ZHANG J, et al. Learning to purification for unsupervised person re-identification[J]. IEEE Transactions on Image Processing, 2023, 32: 3338-3353. doi: 10.1109/TIP.2023.3278860
    [69]
    ZHU X, MORERIO P, MURINO V. Unsupervised domain-adaptive person re-identification based on attributes[C]//IEEE International Conference on Image Processing. Piscataway, USA: IEEE, 2019: 4110-4114.
    [70]
    GUO J, LIU H, SHI W, et al. Unsupervised domain adaptation person re-identification by camera-aware style decoupling and uncertainty modeling[C]//IEEE International Conference on Image Processing. Piscataway, USA: IEEE, 2022: 761-765.
    [71]
    BAI Y, WANG C, LOU Y, et al. Hierarchical connectivity-centered clustering for unsupervised domain adaptation on person re-identification[J]. IEEE Transactions on Image Processing, 2021, 30: 6715-6729. doi: 10.1109/TIP.2021.3094140
    [72]
    NI H, LI Y, GAO L, et al. Part-aware transformer for feneralizable person re-identification[C]//IEEE/CVF International Conference on Computer Vision. Piscataway, USA: IEEE, 2023: 11280-11289.
    [73]
    张栩嘉, 白淼源, 郭继峰. 结合域间一致性与抗噪学习的跨域行人重识别方法[J]. 小型微型计算机系统, 2024, 45(6): 1444-1450.

    ZHANG X J, BAI M Y, GUO J F. Cross-domain person re-identification method combining inter-domain consistency and anti-noise learning[J]. Journal of Chinese Computer Systems, 2024, 45(6): 1444-1450.
    [74]
    杨章静, 吴数立, 黄璞, 等. 基于相机感知的域自适应行人重识别形式[J]. 模式识别与人工智能, 2024, 37(5): 383-397.

    YANG Z J, WU S L, HUANG P, et al. Domain adaptive person re-identification model based on camera perception[J]. Pattern Recognition and Artificial Intelligence, 2024, 37(5): 383-397.
    [75]
    CHEN H, LAGADEC B, BREMOND F. Ice: Inter-instance contrastive encoding for unsupervised person re-identification[C]//IEEE/CVF International Conference on Computer Vision. 2021: 14960-14969.
    [76]
    DAI Z, WANG G, YUAN W, et al. Cluster contrast for unsupervised person re-identification[C]//Asian Conference on Computer Vision. Piscataway, USA: IEEE, 2022: 1142-1160.
    [77]
    ZHANG X, LI D, WANG Z, et al. Implicit sample extension for unsupervised person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2022: 7369-7378.
    [78]
    JIANG K, ZHANG T, ZHANG Y, et al. Self-supervised agent learning for unsupervised cross-domain person re-identification[J]. IEEE Transactions on Image Processing, 2020, 29: 8549-8560. doi: 10.1109/TIP.2020.3016869
    [79]
    WU X, HUI Y, HU X, et al. Unsupervised cross-domain person re-identification method combining improved squeeze and excitation block[C]//International Conference on Computer Network, Electronic and Automation. Piscataway, USA: IEEE, 2022: 238-242.
    [80]
    YAO L, LIN B Y, HAQ Q M U, et al. Unsupervised cross-domain adaptation through mutual mean learning and GANs for person re-identification[C]//3rd International Conference on Artificial Intelligence. Piscataway, USA: IEEE, 2023: 122-128.
    [81]
    HAN G, ZHANG X, LI C. One-shot unsupervised cross-domain person re-identification[J/OL]//IEEE Transactions on Circuits and Systems for Video Technology, 2023[2024-01-23]. https://ieeexplore.ieee.org/abstract/document/10176137. DOI: 10.1109/TCSVT.2023.3293130.
    [82]
    LIN X, REN P, YEH C H, et al. Unsupervised person re-identification: A systematic survey of challenges and solutions[EB/OL]. [2024-01-23]. https://arxiv.org/abs/2109.06057. DOI: 10.48550/arXiv.2109.06057.
    [83]
    WANG M, LAI B, HUANG J, et al. Camera-aware proxies for unsupervised person re-identification[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2021: 2764-2772.
    [84]
    LI M, LI C G, GUO J. Cluster-guided asymmetric contrastive learning for unsupervised person re-identification[J]. IEEE Transactions on Image Processing, 2022, 31: 3606-3617. doi: 10.1109/TIP.2022.3173163
    [85]
    YIN J, ZHANG X, MA Z, et al. A real-time memory updating strategy for unsupervised person re-identification[J]. IEEE Transactions on Image Processing, 2023, 32: 2309-2321. doi: 10.1109/TIP.2023.3266166
    [86]
    PANG Z, WANG C, WANG J, et al. Reliability modeling and contrastive learning for unsupervised person re-identification[J/OL]. Knowledge-Based Systems, 2023[2023-11-09]. https://www.sciencedirect.com/science/article/pii/S0950705123000138. DOI: 10.1016/j.knosys.2023.11026.
    [87]
    LI J, WANG M, GONG X. Transformer based multi-grained features for unsupervised person re-identification[C]//IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway, USA: IEEE, 2023: 42-50.
    [88]
    ZHANG G, ZHANG Y, ZHANG T, et al. PHA: Patch-wise high-frequency augmentation for transformer-based person re-identification[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2023: 14133-14142.
    [89]
    WANG T, LIU H, SONG P, et al. Pose-guided feature disentangling for occluded person re-identification based on transformer[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2022: 2540-2549.
    [90]
    PANG Z, WANG C, ZHAO L, et al. Cross-modality hierarchical clustering and refinement for unsupervised visible-infrared person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(4): 2706-2718. doi: 10.1109/TCSVT.2023.3310015
    [91]
    LIANG W, WANG G, LAI J, et al. Homogeneous-to-heterogeneous: Unsupervised learning for rgb-infrared person re-identification[J]. IEEE Transactions on Image Processing, 2021, 30: 6392-6407. doi: 10.1109/TIP.2021.3092578
    [92]
    YANG B, CHEN J, YE M. Towards grand unified representation learning for unsupervised visible-infrared person re-identification[C]//IEEE/CVF International Conference on Computer Vision. Piscataway, USA: IEEE, 2023: 11069-11079.
    [93]
    YANG B, YE M, CHEN J, et al. Augmented dual-contrastive aggregation learning for unsupervised visible-infrared person re-identification[C]//30th ACM International Conference on Multimedia. New York, USA: ACM, 2022: 2843-2851.
    [94]
    SI T, HE F, LI P, et al. Diversity feature constraint based on heterogeneous data for unsupervised person re-identification[J/OL]. Information Processing & Management, 2023[2023-11-10]. https://www.sciencedirect.com/science/article/pii/S0306457323000419. DOI: 10.1016/j.ipm.2023.103304.
    [95]
    WANG J, ZHANG Z, CHEN M, et al. Optimal transport for label-efficient visible-infrared person re-identification[C]//European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 93-109.
    [96]
    WU Z, YE M. Unsupervised visible-infrared person re-identification via progressive graph matching and alternate learning[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2023: 9548-9558.
    [97]
    GU X, CHANG H, MA B, et al. Appearance-preserving 3d convolution for video-based person re-identification[C]//16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 228-243.
    [98]
    LIU Y, YUAN Z, ZHOU W, et al. Spatial and temporal mutual promotion for video-based person re-identification[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2019: 8786-8793.
    [99]
    JIANG X, QIAO Y, YAN J, et al. SSN3D: Self-separated network to align parts for 3D convolution in video person re-identification[C]//The AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2021: 1691-1699.
    [100]
    LI J, ZHANG S, HUANG T. Multi-scale 3d convolution network for video based person re-identification[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: IEEE, 2019: 8618-8625.
    [101]
    KOESTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2012: 2288-2295.
    [102]
    MCLAUGHLIN N, RINCON J M, MILLER P. Recurrent convolutional network for video-based person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016: 1325-1334.
    [103]
    XU S, CHENG Y, GU K, et al. Jointly attentive spatial-temporal pooling networks for video-based person re-identification[C]//IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2017: 4733-4742.
    [104]
    ZHANG W, YU X, HE X. Learning bidirectional temporal cues for video-based person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 28(10): 2768-2776. http://www.onacademic.com/detail/journal_1000039942712110_7d53.html
    [105]
    ZHOU Z, HUANG Y, WANG W, et al. See the forest for the trees: Joint spatial and temporal recurrent neural networks for video-based person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2017: 4747-4756.
    [106]
    LI S, BAK S, CARR P, et al. Diversity regularized spatiotemporal attention for video-based person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2018: 369-378.
    [107]
    EOM C, LEE G, LEE J, et al. Video-based person re-identification with spatial and temporal memory networks[C]//IEEE/CVF International Conference on Computer Vision. Piscataway, USA: IEEE, 2021: 12036-12045.
    [108]
    WANG Y, ZHANG P, GAO S, et al. Pyramid spatial-temporal aggregation for video-based person re-identification[C]//IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2021: 12026-12035.
    [109]
    PATHAK P, ESHRATIFAR A E, GORMISH M. Video person re-id: Fantastic techniques and where to find them (student abstract)[C]//AAAI Conference on Artificial Intelligence. Keystone, USA: AIAA, 2020: 13893-13894.
    [110]
    LI J, WANG J, TIAN Q, et al. Global-local temporal representations for video person re-identification[C]//IEEE/CVF International Conference on Computer Vision. Piscataway, USA: IEEE, 2019: 3958-3967.
    [111]
    ZANG X, LI G, GAO W. Multidirection and multiscale pyramid in transformer for video-based pedestrian retrieval[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8776-8785. doi: 10.1109/TII.2022.3151766
    [112]
    HOU R, CHANG H, MA B, et al. Bicnet-tks: Learning efficient spatial-temporal representation for video person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscatway, USA: IEEE, 2021: 2014-2023.
    [113]
    LIN X, LI J, MA Z, et al. Learning modal-invariant and temporal-memory for video-based visible-infrared person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 20973-20982.
    [114]
    LI H, XU L, ZHANG Y, et al. Adversarial self-attack defense and spatial-temporal relation mining for visible-infrared video person re-identification[EB/OL]. (2023-06-13)[2023-11-20]. https://arxiv.org/abs/2307.03903. DOI: 10.48550/arXiv.2307.03903.
    [115]
    NGUYEN D T, HONG H G, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): 605-609. doi: 10.3390/s17030605
    [116]
    ZHANG Y, WANG H. Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2023: 2153-2162.
    [117]
    ZHENG A, WANG Z, CHEN Z, et al. Robust multi-modality person re-identification[C]//AAAI Conference on Artificial Intelligence, Keystone, USA: AAAI, 2021: 3529-3537.
  • Related Articles

    [1]ZHAO Gang, LIU Feifei, WANG Jikui, NIE Feiping. Research Progress in Graph-based Unsupervised Dimensionality Reduction Algorithms[J]. INFORMATION AND CONTROL, 2025, 54(1): 28-49. DOI: 10.13976/j.cnki.xk.2024.2311
    [2]WU Jia, XIE Yongfang, YANG Chunhua, GUI Weihua. An Unsupervised Reduction Method for the Selection of Flotation Froth Image Characters and Its Application[J]. INFORMATION AND CONTROL, 2014, 43(3): 314-317,333. DOI: 10.3724/SP.J.1219.2014.00314
    [3]JIANG Xiu, ZHU Fanglai, HAN Dong. The Synchronization for a Class of Uncertain Chaotic Systems Based on Auxiliary Drive Signals and Its Application to Secure Communication[J]. INFORMATION AND CONTROL, 2013, 42(2): 236-242. DOI: 10.3724/SP.J.1219.2013.00236
    [4]HU Shengbo, SI Bing, LI Qianshu, YAN Fuyu, SHU Heng, LIU Yali. Reliability of RFID Systems and Its Computational Models[J]. INFORMATION AND CONTROL, 2012, 41(5): 571-577. DOI: 10.3724/SP.J.1219.2012.00571
    [5]WANG Zi-yang, WU Gang, CHEN Wei. Estimation of Attractive Regions of Nonlinear MPC Controller-A Feasible Solution-based Method[J]. INFORMATION AND CONTROL, 2007, 36(2): 192-198.
    [6]HU Guo-long, SUN You-xian. Advances and Application of Multiple Model Control Method[J]. INFORMATION AND CONTROL, 2004, 33(1): 72-76.
    [7]WANG Tianzhen. RECONSTRUCTION IS NOT NECESSARY FOR COMPUTER VISION[J]. INFORMATION AND CONTROL, 1999, 28(1): 47-52.
    [8]LONG Fuhui, ZHENG Nanning. THE RESEARCH AND DEVELOPMENT OF COMPUTER VISION MODEL[J]. INFORMATION AND CONTROL, 1997, 26(2): 112-116.
    [9]LIU Yongkuan. A SURVEY OF PURDUE UNIVERSITY'S REFERENCE MODEL FOR CIM HIERARCHY COMPUTER CONTROL SYSTEM[J]. INFORMATION AND CONTROL, 1994, 23(6): 345-350.
    [10]YAO Guozheng, WAHG Yunjiu. COMPUTATIONAL VISION AND REGULARIZATION APPROACH[J]. INFORMATION AND CONTROL, 1989, 18(1): 34-43.

Catalog

    Article views (108) PDF downloads (126) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return