LIU Shuguang, SUN Xiuxia, XIE Wujie, DONG Wenhan. Adaptive Dynamic Surface Control for a Class of Pure-Feedback Nonlinear Systems[J]. INFORMATION AND CONTROL, 2012, (3): 301-306. DOI: 10.3724/SP.J.1219.2012.00301
Citation: LIU Shuguang, SUN Xiuxia, XIE Wujie, DONG Wenhan. Adaptive Dynamic Surface Control for a Class of Pure-Feedback Nonlinear Systems[J]. INFORMATION AND CONTROL, 2012, (3): 301-306. DOI: 10.3724/SP.J.1219.2012.00301

Adaptive Dynamic Surface Control for a Class of Pure-Feedback Nonlinear Systems

More Information
  • Received Date: July 10, 2011
  • Revised Date: April 18, 2012
  • Published Date: June 19, 2012
  • A novel adaptive dynamic surface control approach is proposed for a class of completely nonaffine pure-feedback nonlinear systems. Based on the mean value theorem, the unknown non-affine input functions are decomposed into new ones with explicit controllable input parameters. The Nussbaum gain function is employed to resolve the unknown gain symbol problem in virtual control, and avoid the possible singularity of the controller in feedback linearization process. The explosion of terms problem in traditional backstepping design is eliminated by utilizing dynamic surface control. Based on Lyapunov stability theorem and decoupled backstepping method, the semi-global stability of the close-loop system is proved. Simulation results show the effectiveness of the proposed approach.
  • [1]
    董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用[J].控制与决策,2006,21(10):1081-1086,1102. Dong W H, Sun X X, Lin Y. Adaptive backstepping control: Development and applications[J]. Control and Decision, 2006, 21(10): 1081-1086,1102.
    [2]
    Ge S S, Hang C C, Lee T H, et al. Stable adaptive neural network control[M]. Norwell, USA: Kluwer Academic Publisher, 2002: 105-127.
    [3]
    Chen D G, Yang J B. Implementable adaptive backstepping neural control of uncertain strict-feedback nonlinear systems[M]//Lecture Notes in Computer Science: vol.3972. Berlin, Germany: Springer-Verlag, 2006: 875-880.
    [4]
    Ge S S, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems[J]. Automatica, 2002, 38(4): 671-682.
    [5]
    Wang C, Hill D J, Ge S S, et al. An ISS-modular approach for adaptive neural control of pure-feedback systems[J]. Automatica, 2006, 42(5): 723-731.
    [6]
    Zou A, Hou Z, Tan M. Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(4): 886-897.
    [7]
    Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.
    [8]
    Zhang T P, Ge S S. Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form[J]. Automatica, 2008, 44(7): 1895-1903.
    [9]
    Nussbaum R D. Some remarks on a conjecture in parameter adaptive control[J]. Systems and Control Letters, 1983, 3(5): 243-246.
    [10]
    Ge S S, Hong F, Lee T H. Adaptive neural control of nonlinear time-delay system with unknown virtual control coefficients[J]. IEEE Transactions on Systems, Man, and Cybernetics -- Part B: Cybernetics, 2004, 34(1): 499-516.
    [11]
    Ryan E P. A universal adaptive stabilizer for a class of nonlinear systems[J]. Systems and Control Letters, 1991, 16(3): 209-218.
  • Related Articles

    [1]CHEN Yang, ZHANG Dandan, ZHANG Zhikai, ZHANG Heng. Backstepping-free Adaptive Control of Uncertain Strict-feedback Systems with Prescribed Performance: A Fully Actuated System Approach-based Design[J]. INFORMATION AND CONTROL, 2024, 53(6): 774-782, 792. DOI: 10.13976/j.cnki.xk.2023.5022
    [2]DENG Tao, YAO Hong, DU Jun, JIANG Jiulong, ZHANG Zhuohang. Adaptive Dynamic Surface Control for a Class of Uncertain High-order Stochastic Nonlinear Systems[J]. INFORMATION AND CONTROL, 2014, 43(4): 457-462,469. DOI: 10.13976/j.cnki.xk.2014.0457
    [3]LI Chenliang, LIU Yanbin, PENG Fujun, LU Yuping, CHEN Jianjun. An Adaptive Parameter Regulation Algorithm for Control Systems Based on Guardian Maps Theory[J]. INFORMATION AND CONTROL, 2014, 43(2): 193-198,204. DOI: 10.3724/SP.J.1219.2014.00193
    [4]DENG Tao, YAO Hong, DU Jun, SU Lei. Dynamic Surface Control for Nonlinear Systems with Unknown Control Gains[J]. INFORMATION AND CONTROL, 2013, 42(6): 686-692. DOI: 10.3724/SP.J.1219.2013.00686
    [5]LIU Shuguang, SUN Xiuxia, DONG Wenhan, YIN Hui. Dynamic Surface Control for a Class of Strict-Feedback MIMO Systems in Nonlinear Block Controllable Form[J]. INFORMATION AND CONTROL, 2011, 40(6): 767-771.
    [6]DENG Jiuying, WANG Qinruo, YE Baoyu. Robust Control Optimization Design Method of a System with Pure-delay[J]. INFORMATION AND CONTROL, 2011, 40(1): 1-7.
    [7]CHEN Wei, WANG Yaonan, HUANG Huixian. The Neural Networks L2 Robust Adaptive Control for a Class of Nonlinear Systems[J]. INFORMATION AND CONTROL, 2010, 39(3): 291-297.
    [8]LIU Chun-sheng, HU Shou-song. Robust Adaptive H Tracking Control Based on State Observer for a Class of Non-affine Nonlinear Systems[J]. INFORMATION AND CONTROL, 2006, 35(6): 726-731.
    [9]YANG Zhi-ping, CHAO Chang-xiu. Iterative Learning Control of Nonlinear and Uncertain Systems Based on Fuzzy Network[J]. INFORMATION AND CONTROL, 2004, 33(4): 468-471.
    [10]MA Zhuwu, ZONG Shuqang. A NEW CONTROL APPROACH FOR SYSTEMS WITH PURE TIME DELAY[J]. INFORMATION AND CONTROL, 1989, 18(3): 1-6.

Catalog

    Article views (1996) PDF downloads (210) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return