CHEN Shengyao, LIU Zhong. Adaptive Parameter Estimation of Chaotic Systems Based on Impulsive Synchronization[J]. INFORMATION AND CONTROL, 2012, 41(4): 472-476,484. DOI: 10.3724/SP.J.1219.2012.00472
Citation: CHEN Shengyao, LIU Zhong. Adaptive Parameter Estimation of Chaotic Systems Based on Impulsive Synchronization[J]. INFORMATION AND CONTROL, 2012, 41(4): 472-476,484. DOI: 10.3724/SP.J.1219.2012.00472

Adaptive Parameter Estimation of Chaotic Systems Based on Impulsive Synchronization

More Information
  • Received Date: July 05, 2011
  • Revised Date: June 18, 2012
  • Published Date: August 19, 2012
  • An adaptive parameter estimation method based on impulsive synchronization is proposed for a class of chaotic systems with uncertain parameters. Analytical expressions of the adaptive rules for impulsive controlling gain and parameters are obtained, and it is proved theoretically that the proposed method can accurately estimate all unknown parameters of the chaotic systems with uncertain parameters. The Lorenz system and Ueda oscillator system are taken as examples to illustrate the effectiveness of the proposed method through numerical simulations.
  • [1]
    Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.  
    [2]
    Kocarev L, Parlitz U. General approach for chaotic synchronization with applications to communication[J]. Physical Review Letters, 1995, 74(25): 5028-5031.  
    [3]
    Peng J H, Ding E J, Ding M, et al. Synchronizing hyperchaos with a scalar transmitted signal[J]. Physical Review Letters, 1996, 76(6): 904-907.  
    [4]
    Jiang G P, Tang W K, Chen G R. A simple global synchronization criterion for coupled chaotic systems[J]. Chaos, Solitons and Fractals, 2003, 15(5): 925-935.  
    [5]
    Yu Y G, Zhang S C. The synchronization of linearly bidirectional coupled chaotic systems[J]. Chaos, Solitons and Fractals, 2004, 22(1): 189-197.  
    [6]
    Ali M K, Fang J. Synchronization of chaos and hyperchaos using linear and nonlinear feedback functions[J]. Physical Review E, 1997, 55(5): 5285-5290.  
    [7]
    Huang D. Simple adaptive-feedback controller for identicalchaos synchronization[J]. Physical Review E, 2005, 71(3):037203.
    [8]
    Yang T, Chua L O. Impulsive stabilization for control and synchronizationof chaotic systems: Theory and application to securecommunication[J]. IEEE Transactions on Circuits and Systems- I: Fundamental Theory and Applications, 1997, 44(10):976-988.  
    [9]
    Parlitz U, Junge L, Kocarev L. Synchronization-based parameterestimation from time series[J]. Physical Review E, 1996,54(6): 6253-6259.  
    [10]
    Sakaguchi H. Parameter evaluation from time sequences usingchaos synchronization[J]. Physical Review E, 2002, 65(2):027201.
    [11]
    He Q,Wang L, Liu B. Parameter estimation for chaotic systemsby particle swarm optimization[J]. Chaos, Solitons and Fractals,2007, 34(2): 654-661.  
    [12]
    Peng B, Liu B, Zhang F Y, et al. Different evolution algorithmbased parameter estimation for chaotic systems[J]. Chaos, Solitonsand Fractals, 2009, 39(5): 2110-2118.  
    [13]
    Parlitz U. Estimating model parameters from time series byautosynchronization[J]. Physical Review Letters, 1996, 76(8):1232-1235.  
    [14]
    Maybhate A, Amritkar R E. Dynamic algorithm for parameterestimation and its applications[J]. Physical Review E, 2000,61(6): 6461-6470.  
    [15]
    Konnur R. Synchronization-based approach for estimating allmodel parameters of chaotic systems[J]. Physical Review E,2003, 67(2): 027204.
    [16]
    Huang D. Synchronization-based estimation of all parameters ofchaotic systems from time series[J]. Physical Review E, 2004,69(6): 067201.
    [17]
    Yu W W, Chen G R, Cao J D, et al. Parameter identificationof dynamical systems from time series[J]. Physical Review E,2007, 75(6): 067201.
    [18]
    Yu D, Parlitz U. Estimating parameters by autosynchronizationwith dynamics restrictions[J]. Physical Review E, 2008, 77(6):066221.
    [19]
    Chen Y S, Hwang R R, Chang C C. Adaptive impulsive synchronizationof uncertain chaotic systems[J]. Physics Letters A,2010, 374(22): 2254-2258.  
    [20]
    Yang X L, Xu W, Sun Z K. Estimating model parametersin nonautonomous chaotic systems using synchronization[J].Physics Letters A, 2007, 364(5): 378-388.  

Catalog

    Article views (2578) PDF downloads (342) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return