Citation: | TANG Zhenhao, TANG Lixin, YANG Yang. Blast Furnace Cross Temperature Prediction Based on Data-driven and Intelligent Optimization[J]. INFORMATION AND CONTROL, 2014, 43(3): 355-360. DOI: 10.3724/SP.J.1219.2014.00355 |
[1] |
郜传厚,渐令,陈积明,等. 复杂高炉炼铁过程的数据驱动建模及预测算法[J]. 自动化学报,2009,35(6):725-730.
Gao C H,Jian L,Chen J M,et al. Data-driven modeling and predictive algorithm for complex blast furnace ironmaking process[J]. Acta Automatica Sinica,2009,35(6):725-730. |
[2] |
任飞,邓薇薇. 多维AR模型在高炉铁水含硅量预报中的应用[J]. 自动化学报,1987,13(4):307-309.
Ren F,Deng W W. Prediction of silicon content in pig iron with multivariated AR model[J]. Acta Automatica Sinica,1987,13(4):307-309. |
[3] |
Kaneko N,Matsuzaki S,Ito M. Application of improved local models of large scale database-based online modeling to prediction of molten iron temperature of blast furnace[J]. ISIJ International,2010,50(7):939-945.
|
[4] |
Spirin N A,Novikov V S,Fedulov Y V. Prediction of the temperature fields of gas and materials in the blast-furnace stack[J]. Steel in Translation,1995,25(12):5-11.
|
[5] |
郭昌继. 十字测温在南钢4号高炉上的应用[J]. 炼铁,1996,15(1):36-39.
Guo C J. Application of cross beam temperature measuring technology at Nanjing Iron & Steel Works No.4 BF[J]. Iron Making,1996,15(1):36-39. |
[6] |
梁巨鸿,龙志远. 十字测温技术在武钢双钟炉顶高炉上的应用[J]. 炼铁,1997,16(1):9-12.
Liang J H,Long Z Y. Application of cross-beam temperature measuring technology to blast furnace tops with double-bell at WISGCO[J]. Iron Making,1997,16(1):9-12. |
[7] |
赵鸿波. 十字测温曲线在本钢2号高炉上的应用[J]. 炼铁,2004,2(6):36-38.
Zhao H B. Application of cross beam temperature measuring technology at Benxi Iron & Steel Works No.2 BF[J]. Iron Making,2004,2(6):36-38. |
[8] |
薛崇盛,曹卫华,吴敏,等. 高炉料面煤气流分布识别方法[J]. 清华大学学报:自然科学版,2008,48(S2):1785-1789.
Xue C S,Cao W H,Wu M,et al. Recognition method for determining gas flow distribution along blast furnace burden surface[J]. Journal of Tsinghua University:Science and Technology,2008,48(S2):1785-1789. |
[9] |
刘克显,王玉涛,王师. 高炉煤粉喷吹系统的动态辨识[J]. 东北大学学报:自然科学版,2001,22(4):366-369.
Liu K X,Wang Y T,Wang S. Dynamic identification of pulverized coal injection system with fuzzy neural network [J]. Journal of Northeastern University:Science and Technology,2001,22(4):366-369. |
[10] |
刘金琨,寇新民,徐心和,等. 神经网络高炉铁水含硅量预报模型[J]. 东北大学学报:自然科学版,1996,17(6):597-601.
Liu J K,Kou X M,Xu X H,et al. Prediction model for silicon content in hot metal in blast furnace based on neural networks[J]. Journal of Northeastern University:Nature Science,1996,17(6):597-601. |
[11] |
杨尚宝,杨天钧,董一诚. 神经网络高炉路况预测与判断专家系统[J]. 北京科技大学学报,1996,18(3):220-225.
Yang S B,Yang T J,Dong Y C. Expert system based on neural networks for predicting and judging the state of the blast furnace[J]. Journal of University of Science and Technology Beijing,1996,18(3):220-225. |
[12] |
Vapnik V N. The nature of statistical learning theory[M]. Berlin,Germany:Springer,1995.
|
[13] |
Gao C H,Jian L,Luo S H. Modeling of the thermal state change of blast furnace hearth with support vector machines [J]. IEEE Transactions on Industrial Electronics,2012,59(2):1134-1145.
|
[14] |
Suykens J A K,Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293-300.
|
[15] |
Zhao J,Wang W,Pedrycz W,et al. Online parameter optimization-based prediction for converter gas system by parallel strategies[J]. IEEE Transactions on Control Systems Technology,2012,20(3):835-845.
|
[16] |
Goethals I,Pelckmans K,Suykens J A K,et al. Subspace identification of Harmmerstein systems using least squares support vector machines[J]. IEEE Transactions on Automatic Control,2005,50(10):1509-1519.
|
[17] |
Kennedy J,Eberhart R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Piscataway,NJ,USA:IEEE,1995:1942-1948.
|
[1] | ZHAO Huarong, PENG Li, DAI Feifei. Data-driven Bipartite Consensus Control for Multi-agent Systems with Sensor Saturation[J]. INFORMATION AND CONTROL, 2021, 50(5): 531-537. DOI: 10.13976/j.cnki.xk.2021.0557 |
[2] | CHEN Haomin, YAO Senjing, XI Yu, ZHANG Fan, XIN Wencheng, REN Chao. Data-driven Based Active Disturbance Rejection Control for Substation Inspection Robot[J]. INFORMATION AND CONTROL, 2021, 50(4): 385-394. DOI: 10.13976/j.cnki.xk.2021.0369 |
[3] | HU Changhua, SHI Quan, SI Xiaosheng, ZHANG Zhengxin. Data-driven Life Prediction and Health Management: State of the Art[J]. INFORMATION AND CONTROL, 2017, 46(1): 72-82. DOI: 10.13976/j.cnki.xk.2017.0072 |
[4] | ZHAO Chao, DAI Kuncheng. Power System Short-term Load Forecasting Based on Adaptive Weighted Least Squares Support Vector Machine[J]. INFORMATION AND CONTROL, 2015, 44(5): 634-640. DOI: 10.13976/j.cnki.xk.2015.0634 |
[5] | WANG Xudong, FAN Xufeng, CHEN Jun, ZHU Qiao. Data-Driven PID Control of Cold Gas Micro-Proportion Thruster Module[J]. INFORMATION AND CONTROL, 2014, 43(3): 381-384. DOI: 10.3724/SP.J.1219.2014.00381 |
[6] | DUAN Peiyong, LIU Congcong, DUAN Chenxu, LI Hui. Indoor Dynamic Thermal Comfort Control Method Based on Particle Swarm Optimization[J]. INFORMATION AND CONTROL, 2013, 42(1): 100-110. DOI: 10.3724/SP.J.1219.2013.00100 |
[7] | WANG Jing. A Method of Data-driven Parameter Setting Based on Neural Network[J]. INFORMATION AND CONTROL, 2012, 41(2): 220-224,232. DOI: 10.3724/SP.J.1219.2012.00220 |
[8] | LIANG Ximing, YAN Gang, LI Shanchun, LONG Wen, LONG Zuqiang. Nonlinear Predictive Control Based on Least Squares Support Vector Machines and Chaos Optimization[J]. INFORMATION AND CONTROL, 2010, 39(2): 129-135. |
[9] | ZHANG Li-ping, YU Huan-jun, CHEN De-zhao, HU Shang-xu. Analysis and Improvement of Particle Swarm Optimization Algorithm[J]. INFORMATION AND CONTROL, 2004, 33(5): 513-517. |
[10] | QIN Zhenxing, YUAN Zengre. A PART OF OUR RESEARCH WORK AND VIEWS IN THE KDD AND DATA MINING[J]. INFORMATION AND CONTROL, 1999, 28(4): 255-261. |