TANG Zhenhao, TANG Lixin, YANG Yang. Blast Furnace Cross Temperature Prediction Based on Data-driven and Intelligent Optimization[J]. INFORMATION AND CONTROL, 2014, 43(3): 355-360. DOI: 10.3724/SP.J.1219.2014.00355
Citation: TANG Zhenhao, TANG Lixin, YANG Yang. Blast Furnace Cross Temperature Prediction Based on Data-driven and Intelligent Optimization[J]. INFORMATION AND CONTROL, 2014, 43(3): 355-360. DOI: 10.3724/SP.J.1219.2014.00355

Blast Furnace Cross Temperature Prediction Based on Data-driven and Intelligent Optimization

More Information
  • Received Date: September 24, 2013
  • Revised Date: February 27, 2014
  • Published Date: June 19, 2014
  • Least square support vector machine (LS-SVM) is employed to model of the blast furnace cross temperature. First,correlation analysis is performed to select inputs related to cross temperature. Second,an improved particle swarm optimization (PSO) is proposed to obtain optimized parameters for LS-SVM in order to improve the prediction accuracy. Finally,the prediction model of blast furnace cross temperature based on LS-SVM is achieved. Experiments using practical production data illustrate that the input selection based on correlation analysis can reduce the computation complexity without influencing the prediction accuracy. Compared with the grid search method,the proposed data-driven cross temperature model represents an improvement in accuracy of 3%,and can meet the requirements of production.
  • [1]
    郜传厚,渐令,陈积明,等. 复杂高炉炼铁过程的数据驱动建模及预测算法[J]. 自动化学报,2009,35(6):725-730.
    Gao C H,Jian L,Chen J M,et al. Data-driven modeling and predictive algorithm for complex blast furnace ironmaking process[J]. Acta Automatica Sinica,2009,35(6):725-730.
    [2]
    任飞,邓薇薇. 多维AR模型在高炉铁水含硅量预报中的应用[J]. 自动化学报,1987,13(4):307-309.
    Ren F,Deng W W. Prediction of silicon content in pig iron with multivariated AR model[J]. Acta Automatica Sinica,1987,13(4):307-309.
    [3]
    Kaneko N,Matsuzaki S,Ito M. Application of improved local models of large scale database-based online modeling to prediction of molten iron temperature of blast furnace[J]. ISIJ International,2010,50(7):939-945.
    [4]
    Spirin N A,Novikov V S,Fedulov Y V. Prediction of the temperature fields of gas and materials in the blast-furnace stack[J]. Steel in Translation,1995,25(12):5-11.
    [5]
    郭昌继. 十字测温在南钢4号高炉上的应用[J]. 炼铁,1996,15(1):36-39.
    Guo C J. Application of cross beam temperature measuring technology at Nanjing Iron & Steel Works No.4 BF[J]. Iron Making,1996,15(1):36-39.
    [6]
    梁巨鸿,龙志远. 十字测温技术在武钢双钟炉顶高炉上的应用[J]. 炼铁,1997,16(1):9-12.
    Liang J H,Long Z Y. Application of cross-beam temperature measuring technology to blast furnace tops with double-bell at WISGCO[J]. Iron Making,1997,16(1):9-12.
    [7]
    赵鸿波. 十字测温曲线在本钢2号高炉上的应用[J]. 炼铁,2004,2(6):36-38.
    Zhao H B. Application of cross beam temperature measuring technology at Benxi Iron & Steel Works No.2 BF[J]. Iron Making,2004,2(6):36-38.
    [8]
    薛崇盛,曹卫华,吴敏,等. 高炉料面煤气流分布识别方法[J]. 清华大学学报:自然科学版,2008,48(S2):1785-1789.
    Xue C S,Cao W H,Wu M,et al. Recognition method for determining gas flow distribution along blast furnace burden surface[J]. Journal of Tsinghua University:Science and Technology,2008,48(S2):1785-1789.
    [9]
    刘克显,王玉涛,王师. 高炉煤粉喷吹系统的动态辨识[J]. 东北大学学报:自然科学版,2001,22(4):366-369.
    Liu K X,Wang Y T,Wang S. Dynamic identification of pulverized coal injection system with fuzzy neural network [J]. Journal of Northeastern University:Science and Technology,2001,22(4):366-369.
    [10]
    刘金琨,寇新民,徐心和,等. 神经网络高炉铁水含硅量预报模型[J]. 东北大学学报:自然科学版,1996,17(6):597-601.
    Liu J K,Kou X M,Xu X H,et al. Prediction model for silicon content in hot metal in blast furnace based on neural networks[J]. Journal of Northeastern University:Nature Science,1996,17(6):597-601.
    [11]
    杨尚宝,杨天钧,董一诚. 神经网络高炉路况预测与判断专家系统[J]. 北京科技大学学报,1996,18(3):220-225.
    Yang S B,Yang T J,Dong Y C. Expert system based on neural networks for predicting and judging the state of the blast furnace[J]. Journal of University of Science and Technology Beijing,1996,18(3):220-225.
    [12]
    Vapnik V N. The nature of statistical learning theory[M]. Berlin,Germany:Springer,1995.
    [13]
    Gao C H,Jian L,Luo S H. Modeling of the thermal state change of blast furnace hearth with support vector machines [J]. IEEE Transactions on Industrial Electronics,2012,59(2):1134-1145.
    [14]
    Suykens J A K,Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293-300.
    [15]
    Zhao J,Wang W,Pedrycz W,et al. Online parameter optimization-based prediction for converter gas system by parallel strategies[J]. IEEE Transactions on Control Systems Technology,2012,20(3):835-845.
    [16]
    Goethals I,Pelckmans K,Suykens J A K,et al. Subspace identification of Harmmerstein systems using least squares support vector machines[J]. IEEE Transactions on Automatic Control,2005,50(10):1509-1519.
    [17]
    Kennedy J,Eberhart R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Piscataway,NJ,USA:IEEE,1995:1942-1948.
  • Related Articles

    [1]ZHAO Huarong, PENG Li, DAI Feifei. Data-driven Bipartite Consensus Control for Multi-agent Systems with Sensor Saturation[J]. INFORMATION AND CONTROL, 2021, 50(5): 531-537. DOI: 10.13976/j.cnki.xk.2021.0557
    [2]CHEN Haomin, YAO Senjing, XI Yu, ZHANG Fan, XIN Wencheng, REN Chao. Data-driven Based Active Disturbance Rejection Control for Substation Inspection Robot[J]. INFORMATION AND CONTROL, 2021, 50(4): 385-394. DOI: 10.13976/j.cnki.xk.2021.0369
    [3]HU Changhua, SHI Quan, SI Xiaosheng, ZHANG Zhengxin. Data-driven Life Prediction and Health Management: State of the Art[J]. INFORMATION AND CONTROL, 2017, 46(1): 72-82. DOI: 10.13976/j.cnki.xk.2017.0072
    [4]ZHAO Chao, DAI Kuncheng. Power System Short-term Load Forecasting Based on Adaptive Weighted Least Squares Support Vector Machine[J]. INFORMATION AND CONTROL, 2015, 44(5): 634-640. DOI: 10.13976/j.cnki.xk.2015.0634
    [5]WANG Xudong, FAN Xufeng, CHEN Jun, ZHU Qiao. Data-Driven PID Control of Cold Gas Micro-Proportion Thruster Module[J]. INFORMATION AND CONTROL, 2014, 43(3): 381-384. DOI: 10.3724/SP.J.1219.2014.00381
    [6]DUAN Peiyong, LIU Congcong, DUAN Chenxu, LI Hui. Indoor Dynamic Thermal Comfort Control Method Based on Particle Swarm Optimization[J]. INFORMATION AND CONTROL, 2013, 42(1): 100-110. DOI: 10.3724/SP.J.1219.2013.00100
    [7]WANG Jing. A Method of Data-driven Parameter Setting Based on Neural Network[J]. INFORMATION AND CONTROL, 2012, 41(2): 220-224,232. DOI: 10.3724/SP.J.1219.2012.00220
    [8]LIANG Ximing, YAN Gang, LI Shanchun, LONG Wen, LONG Zuqiang. Nonlinear Predictive Control Based on Least Squares Support Vector Machines and Chaos Optimization[J]. INFORMATION AND CONTROL, 2010, 39(2): 129-135.
    [9]ZHANG Li-ping, YU Huan-jun, CHEN De-zhao, HU Shang-xu. Analysis and Improvement of Particle Swarm Optimization Algorithm[J]. INFORMATION AND CONTROL, 2004, 33(5): 513-517.
    [10]QIN Zhenxing, YUAN Zengre. A PART OF OUR RESEARCH WORK AND VIEWS IN THE KDD AND DATA MINING[J]. INFORMATION AND CONTROL, 1999, 28(4): 255-261.

Catalog

    Article views (1461) PDF downloads (439) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return