面向多无人机协同观测的分布式无色信息滤波方法

张庆杰, 徐惠斌, 陶军, 陶建武

张庆杰, 徐惠斌, 陶军, 陶建武. 面向多无人机协同观测的分布式无色信息滤波方法[J]. 信息与控制, 2014, 43(6): 654-663. DOI: 10.13976/j.cnki.xk.2014.0654
引用本文: 张庆杰, 徐惠斌, 陶军, 陶建武. 面向多无人机协同观测的分布式无色信息滤波方法[J]. 信息与控制, 2014, 43(6): 654-663. DOI: 10.13976/j.cnki.xk.2014.0654
ZHANG Qingjie, XU Huibin, TAO Jun, TAO Jianwu. Distributed Unscented Information Filter Method for Cooperative Observation Using Multiple UAVs[J]. INFORMATION AND CONTROL, 2014, 43(6): 654-663. DOI: 10.13976/j.cnki.xk.2014.0654
Citation: ZHANG Qingjie, XU Huibin, TAO Jun, TAO Jianwu. Distributed Unscented Information Filter Method for Cooperative Observation Using Multiple UAVs[J]. INFORMATION AND CONTROL, 2014, 43(6): 654-663. DOI: 10.13976/j.cnki.xk.2014.0654
张庆杰, 徐惠斌, 陶军, 陶建武. 面向多无人机协同观测的分布式无色信息滤波方法[J]. 信息与控制, 2014, 43(6): 654-663. CSTR: 32166.14.xk.2014.0654
引用本文: 张庆杰, 徐惠斌, 陶军, 陶建武. 面向多无人机协同观测的分布式无色信息滤波方法[J]. 信息与控制, 2014, 43(6): 654-663. CSTR: 32166.14.xk.2014.0654
ZHANG Qingjie, XU Huibin, TAO Jun, TAO Jianwu. Distributed Unscented Information Filter Method for Cooperative Observation Using Multiple UAVs[J]. INFORMATION AND CONTROL, 2014, 43(6): 654-663. CSTR: 32166.14.xk.2014.0654
Citation: ZHANG Qingjie, XU Huibin, TAO Jun, TAO Jianwu. Distributed Unscented Information Filter Method for Cooperative Observation Using Multiple UAVs[J]. INFORMATION AND CONTROL, 2014, 43(6): 654-663. CSTR: 32166.14.xk.2014.0654

面向多无人机协同观测的分布式无色信息滤波方法

基金项目: 国家自然科学基金资助项目(61203355);吉林省科技发展计划资助项目(20130522108JH)
详细信息
    作者简介:

    张庆杰(1981-),男,博士,讲师.研究领域为多智能体一致性理论,多无人机协同控制等;
    徐惠斌(1966-),男,学士,讲师.研究领域为无人机智能控制,多无人机协同等;
    陶军(1966-),男,硕士,副教授.研究领域为无人机智能控制,航路规划等.

    通讯作者:

    张庆杰, nudtzhang@hotmail.com

  • 中图分类号: TP18

Distributed Unscented Information Filter Method for Cooperative Observation Using Multiple UAVs

  • 摘要: 为解决复杂通信条件下的多无人机协同目标观测问题,提出了基于多智能体一致性理论的分布式状态估计方法.考虑到松散通信结构和通信条件的复杂性,设计双时窗递推迭代机制,即预测/更新时间窗和一致性融合时间窗,用来提高分布式系统的滤波精度.基于一致性融合算法,提出了分布式无色信息滤波方法.从理论上分析了一致性融合算法收敛性对估计精度的影响,揭示该方法的估计协方差劣于集中式方法的根本原因.蒙特卡洛仿真实验表明,该方法对复杂通信条件具有较强的鲁棒性,在平均估计误差、平均一致性误差及平均协方差矩阵迹等方面表现出色,能够满足复杂通信条件下多无人机系统对非线性目标模型状态实时估算的要求.
    Abstract: To solve the problem of cooperative target observation for a multiple UAV (unmanned aerial vehicle) system with a complex communication condition, we propose a distributed state estimation method based on multi-agent consensus theory. Considering the loose communication structure and the complexity of the communication condition, we design an iteration mechanism with double-time windows, including a local prediction/update window and a consensus fusion window, to improve the filter precision of the distributed system. Then, we propose a filter method for distributed unscented information based on the consensus algorithm. The influence of the convergence property of the consensus algorithm on the estimation precision is analyzed theoretically, revealing the fundamental reason why the covariance error of the proposed method is greater than that of the centralized method. The Monte Carlo simulation experiments indicate that the proposed method is robust to complex network constraints, and has outstanding performance on average estimation error, average consistency error and average trace of the covariance matrix. This method can meet the requirement for the real time estimation of non-linear targets for a multiple UAV system under a complex network.
  • [1] Porfiri M, Roberson D G, Stilwell D J. Tracking and formation control of multiple autonomous agents: A two-level consensus approach[J]. Automatica, 2007, 43(8): 1318-1328.
    [2] Su H, Wang X, Lin Z. Flocking of multi-agents with a virtual leader[J]. IEEE Transactions on Automatic Control, 2009, 54(2): 293-307.
    [3] Lin J, Morse A S, Anderson B D O. The multi-agent rendezvous problem, Part 1: The synchronous case[J]. SIAM Journal on Control and Optimization, 2007, 46(6): 2096-2119.
    [4] Bauso D, Giarre L, Pesenti R. Distributed consensus protocols for coordinating buyers[C]//Proceedings of the 42nd IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 2003: 588-592.
    [5] Jadbabaie A, Motee N, Barahona M. On the stability of the Kuramoto model of coupled nonlinear oscillators[C]//Proceedings of the 2004 American Control Conference. Piscataway, NJ, USA: IEEE, 2004: 4296-4301.
    [6] Saber R O. Distributed Kalman filter with embedded consensus filters[C]//Proceedings of the 44th IEEE Conference on Decision and Control & European Control Conference. Piscataway, NJ, USA: IEEE, 2005: 8179-8184.
    [7] Spanos D P, Olfati S R. Approximate distributed Kalman filtering in sensor networks with quantifiable performanc[C]//Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. Piscataway, NJ, USA: IEEE, 2005: 133-139.
    [8] Saber R O, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion[C]//Proceedings of the 44th IEEE Conference on Decision and Control & European Control Conference. Piscataway, NJ, USA: IEEE, 2005: 6698-6703.
    [9] Casbeer D W, Beard R. Distributed information filtering using consensus filters[C]//Proceedings of the 2009 American Control Conference. Piscataway, NJ, USA: IEEE, 2009: 1882-1887.
    [10] Yang P, Freeman R A, Lynch K M. Distributed cooperative active sensing using consensus filters[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2007: 405-410.
    [11] 石晓航, 梁青阳, 张庆杰, 等. DC-IMM估计方法在多UAV 协同目标跟踪中的应用[J]. 中南大学学报, 2013, 44(7): 52-57. Shi X H, Liang Q Y, Zhang Q J, et al. The multi-UAV target tracking using DC-IMM estimate method[J]. Journal of Southeast University, 2013, 44(7): 52-57.
    [12] Stankovic S S, Stankovic M, Stipanovic D M. Consensus based overlapping decentralized estimation with missing observations and communication faults[J]. Automatica, 2009, 45(6): 1397-1406.
    [13] Wang L, Zhang Q J, Zhu H Y, et al. Adaptive consensus fusion estimation for MSN with communication delays and switching network topologies[C]//Proceedings of the 47th IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 2010: 2087-2092.
    [14] 张庆杰, 沈林成, 朱华勇. 多智能体系统实现鲁棒一致的时延相关稳定判据[J]. 控制与决策, 2012, 27(4): 584-592. Zhang Q J, Shen L C, Zhu H Y. Delay-dependent stability criteria for robust consensus of multi-agent systems[J]. Control and Decision, 2012, 27(4): 584-592.
    [15] Tian Y, Liu C. Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations[J]. Automatica, 2009, 45(5): 1347-1353.
    [16] Lin P, Jia Y, Li L. Distributed robust H consensus control in directed networks of agents with time-delay[J]. Systems & Control Letters, 2008, 57(8): 643-653.
    [17] Lin P, Jia Y. Robust H consensus analysis of a class of second-order multi-agent systems with uncertainty[J]. IET Control Theory & Applications, 2010, 4(3): 487-498.
    [18] Hu J. On robust consensus of multi-agent systems with communication delays[J]. Kybernetika, 2009, 45(5): 768-784.
    [19] Lee D J. Nonlinear estimation and multiple sensor fusion using unscented information filtering[J]. IEEE Signal Processing Letters, 2008, 15: 861-864.
计量
  • 文章访问数:  1041
  • HTML全文浏览量:  0
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-03
  • 发布日期:  2014-12-19

目录

    /

    返回文章
    返回
    x