基于交互多模型虚拟观测卡尔曼滤波的多雷达组网机动目标跟踪算法

Maneuvering Target Tracking Algorithm in Multi-radar Networking Based on Interacting Multiple Model-virtual Observation Kalman Filter

  • 摘要: 针对强机动性目标难以使用单一运动模型来描述,组网雷达(NR)的极坐标测量值与融合中心惯性(FCRNS)坐标的状态值呈非线性关系等问题,提出将FCRNS坐标虚拟为观测坐标(称为虚拟观测卡尔曼滤波),以满足采用卡尔曼滤波(KF)进行多雷达组网目标跟踪的线性化约束;使用协同转弯模型+匀速直线模型构建交互多模型,解决了多雷达组网空域机动目标自适应运动建模问题;通过虚拟观测误差协方差矩阵建模、初始估计建模,构建了交互多模型虚拟观测卡尔曼滤波算法(IMM-VOKFA),用于多雷达组网对空域机动目标的滤波跟踪.将提出的IMM-VOKFA用于多雷达组网的转弯机动目标跟踪中,并与交互多模型扩展卡尔曼滤波(IMM-EKF)进行了对比.仿真结果表明,IMM-VOKFA滤波精度高,机动自适应性强,计算稳定性高,工程可用性好.

     

    Abstract: Because a single model cannot describe maneuvering targets accurately and measured values in the polar coordinates of networked radar (NR) have a nonlinear relation with state values in the coordinates system of the fusion center of the radar networking station(FCRNS),we propose a strategy of transforming the tracking coordinates of FCRNS into virtual observation coordinates to satisfy linear constraints in the target tracking of multi-radar networkingusing (Kalman filter) KF. We construct an interacting multiple model that combines the coordinated turn model and the constant velocity model to adaptively model the motion of the airspace maneuvering targets in the multiradar networking. Then we propose an interacting multiple model-virtual observation Kalman filter algorithm (IMM-VOKFA) to track airspace maneuvering targets by modeling the covariance matrix of virtual observation errors and the initial estimation. We use the proposed IMM-VOKFA to track the turning of a maneuvering target in a multi-radar networking system and compare it with interacting multiple model extended Kalman filter algorithm. Simulation results demonstrate that IMM-VOKFA has strong motor adaptability,good calculating stability,and strong engineering effectiveness.

     

/

返回文章
返回