基于自适应模糊滑模控制的高速列车自动停车算法

张梦楠, 徐洪泽, 张严心

张梦楠, 徐洪泽, 张严心. 基于自适应模糊滑模控制的高速列车自动停车算法[J]. 信息与控制, 2015, 44(2): 223-229. DOI: 10.13976/j.cnki.xk.2015.0223
引用本文: 张梦楠, 徐洪泽, 张严心. 基于自适应模糊滑模控制的高速列车自动停车算法[J]. 信息与控制, 2015, 44(2): 223-229. DOI: 10.13976/j.cnki.xk.2015.0223
ZHANG Mengnan, XU Hongze, ZHANG Yanxin. Automatic Stop Method for High Speed Train Based on Adaptive Fuzzy Sliding Mode Control[J]. INFORMATION AND CONTROL, 2015, 44(2): 223-229. DOI: 10.13976/j.cnki.xk.2015.0223
Citation: ZHANG Mengnan, XU Hongze, ZHANG Yanxin. Automatic Stop Method for High Speed Train Based on Adaptive Fuzzy Sliding Mode Control[J]. INFORMATION AND CONTROL, 2015, 44(2): 223-229. DOI: 10.13976/j.cnki.xk.2015.0223
张梦楠, 徐洪泽, 张严心. 基于自适应模糊滑模控制的高速列车自动停车算法[J]. 信息与控制, 2015, 44(2): 223-229. CSTR: 32166.14.xk.2015.0223
引用本文: 张梦楠, 徐洪泽, 张严心. 基于自适应模糊滑模控制的高速列车自动停车算法[J]. 信息与控制, 2015, 44(2): 223-229. CSTR: 32166.14.xk.2015.0223
ZHANG Mengnan, XU Hongze, ZHANG Yanxin. Automatic Stop Method for High Speed Train Based on Adaptive Fuzzy Sliding Mode Control[J]. INFORMATION AND CONTROL, 2015, 44(2): 223-229. CSTR: 32166.14.xk.2015.0223
Citation: ZHANG Mengnan, XU Hongze, ZHANG Yanxin. Automatic Stop Method for High Speed Train Based on Adaptive Fuzzy Sliding Mode Control[J]. INFORMATION AND CONTROL, 2015, 44(2): 223-229. CSTR: 32166.14.xk.2015.0223

基于自适应模糊滑模控制的高速列车自动停车算法

基金项目: 国家科技支撑计划资助项目(2013BAG19B00-03-01-01);中央高校基本科研业务费专项资金资助项目(W13JB00420)
详细信息
    作者简介:

    张梦楠(1986-),男,博士生.研究领域为高速列车运行控制系统设计,复杂大系统控制.
    徐洪泽(1966-),男,教授,博士生导师.研究领域为高速列车运行控制系统设计.
    张严心(1976-),女,副教授.研究领域为复杂组合系统结构特性分析,复杂网络控制,可靠性控制.

    通讯作者:

    张梦楠,09111017@bjtu.edu.cn

  • 中图分类号: U284.48

Automatic Stop Method for High Speed Train Based on Adaptive Fuzzy Sliding Mode Control

  • 摘要: 为实现高速列车自动停车功能,根据列车纵向动力学分析和制动系统原理,建立了高速列车非线性制动模型. 针对大系统模型的强耦合、强非线性和不确定性的特点,依据列车运行速度,将非线性模型表示为T-S(Takagi-Sugeno)模型,并基于自适应模糊策略,设计了自动停车滑模控制器. 控制算法通过自适应模糊系统逼近模型中不确定项和互联项的上界,消除了车间作用力及运行阻力的影响,使列车追踪理想停车曲线. 依据李亚普诺夫方法证明了闭环系统的稳定性和追踪误差的收敛性. 仿真结果验证了所提滑模控制器的有效性.
    Abstract: To realize the function of the automatic control used in high speed trains, a nonlinear brake model is built that reflects the train longitudinal dynamics and the operational principles of the brake system. A nonlinear model is transformed into a T-S fuzzy model according to the running speed of the train to handle the strong coupling, the strong nonlinearity, and the uncertainty of the large-scale system. Then we design a sliding mode stop controller based on adaptive fuzzy control schemes. The presented algorithm designs an adaptive fuzzy system, which approximates the upper bound of the interconnected terms and the uncertain signals within the model, elimnating the impact of interacting forces between the carriages and the running resistance, and making the trains track the ideal stop curves. The stability of this closed-loop system and the convergence of tracking errors is proved using Lyapunov methods. Simulation results confirm the effectiveness of the proposed sliding mode controller.
  • [1] 王月明. 动车组制动技术[M]. 北京: 中国铁道出版社, 2004: 43-75. Wang Y M. EMU braking technology[M]. Beijing: China Railway Publication House, 2004: 43-75.
    [2] Dong H R, Gao S G, Ning B, et al. Extended fuzzy logic controller for high speed train[J]. Neural Computing & Application, 2013, 22(2): 321-328.
    [3] 余进, 钱清泉, 何正友. 两级模糊神经网络在高速列车ATO系统中的应用研究[J]. 铁道学报, 2008, 30(5): 52-56. Yu J, Qian Q Q, He Z Y. Research on application of two-degree fuzzy neural network in ATO of high speed train[J]. Journal of the China Railway Society, 2008, 30(5): 52-56.
    [4] Zhou Y, Yang X, Mi C. Model predictive control for high-speed train with automatic trajectory configuration and tractive force optimization[J]. Computer Model in Engineering & Sciences, 2013, 90(6): 415-437.
    [5] Song Q, Song Y D, Tang T, et al. Computationally inexpensive tracking control of high-speed Trains with traction/brake saturation[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1116-1125.
    [6] Song Q, Song Y D. Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures[J]. IEEE Transactions on Neural Networks, 2011, 22(12): 2250-2261.
    [7] Song Q, Song Y D, Cai W. Adaptive backstepping control of train systems with traction/braking dynamics and uncertain resistive forces[J]. Vehicle System Dynamics, 2011, 49(9): 1441-1454.
    [8] 罗仁士, 王义惠, 于振宇, 等. 城轨列车自适应精确停车控制算法研究[J]. 铁道学报, 2012, 34(4): 64-68. Luo R S, Wang Y H, Yu Z Y, et al. Adaptive stopping control of urban rail vehicle[J]. Journal of the China Railway Society, 2012, 34(4): 64-68.
    [9] Yang C D, Sun Y P. Mixed H2/H cruise controller design for high speed train[J]. International Journal of Control, 2001, 74(9): 905-920.
    [10] Chou M S, Xia X H. Optimal cruise control of heavy-haul trains equipped with electronically controlled pneumatic brake systems[J]. Control Engineering Practice, 2007, 15(5): 511-519.
    [11] Chou M S, Xia X H, Kayser C. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems[J]. Control Engineering Practice, 2007, 15(4): 501-509.
    [12] Liu Y J, Tong S C, Chen L P. Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(2): 275-288.
    [13] Tong S C, Huo B Y, Li Y M. Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1): 1-15.
    [14] Koo G B, Park J B, Joo Y H. Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: An LMI approach[J]. IEEE Transactions on Fuzzy Systems, 22(2): 406-419.
    [15] Islam S, Liu P. Robust sliding mode control for robot manipulators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(6): 2444-2453.
    [16] Zhang Y X, Dong H R. Fuzzy-neural network adaptive sliding mode tracking control for interconnected system[J]. Computational Intelligence, 2006, 4114(1): 127-133.
    [17] 张严心, 张嗣瀛. 一类非线性互联系统的间接自适应模糊滑模跟踪控制[J]. 自动化学报, 2003, 29(5): 658-665. Zhang Y X, Zhang S Y. Fuzzy indirect adaptive sliding mode tracking control for a class of nonlinear interconnected systems[J]. Acta Automatica Sinica, 2003, 29(5): 658-665.
    [18] Chiang C C. Adaptive fuzzy sliding mode control for time-delay uncertain large-scale systems[C]//44th IEEE Conference on Decision and Control and European Control Conference. Piscataway, NJ, USA: IEEE, 2005: 4077-4082.
    [19] Chiang C C. Decentralized robust fuzzy-model-based control of uncertain large-scale systems with input delay[C]//IEEE International Conference on Fuzzy Systems. Piscataway, NJ, USA: IEEE, 2006: 498-505.
    [20] Krstic M, Kanellakopoulos I, Kokotvic P. Nonlinear and adaptive control design[M]. New York, USA: Wiley, 1995: 21-25.
计量
  • 文章访问数:  943
  • HTML全文浏览量:  0
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-09
  • 发布日期:  2015-04-19

目录

    /

    返回文章
    返回
    x