基于MIMO模糊控制的锂离子电池参数自适应等效电路模型及SOC估计

Adaptive Parameters Equivalent-circuit Model of Li-ion Battery Based on MIMO Fuzzy Control and SOC Estimation

  • 摘要: 针对锂电池等效电路模型无法在荷电状态(SOC)全区间精确反映锂电池内部真实状态的问题,提出了基于多输入多输出(MIMO)模糊控制的参数自适应等效电路模型.该等效电路模型以新一代汽车伙伴关系(PNGV)模型为自适应原型,根据锂离子电池和PNGV模型的外特性参数差异,由MIMO模糊调节器动态实时修正模型参数,达到精确建模、反映电池内部真实状态的目的.实验验证了自适应参数对模型精度和自适应性能的影响及模型在变工况下的模拟效果.通过对比锂电池参数自适应模型和静态参数PNGV模型的扩展卡尔曼滤波算法估计SOC的误差,验证了参数自适应模型的有效性.

     

    Abstract: We propose an adaptive parameters equivalent-circuit model of a Li-ion battery based on multi-input multi-output (MIMO) fuzzy control to solve the problem that the normal equivalent-circuit model cannot reflect a Li-ion battery's internal state precisely at all regions of the state of charge (SOC). The model, taking the partnership for a new generation of vehicles (PNGV) model as an adaptive prototype, dynamically updates the parameters in real-time using the MIMO fuzzy regulator. The updates are made according to the difference in the external characteristics between Li-ion battery and the PNGV model, in order to reach the goal of accurate modeling and reflecting the battery's true internal state. Experiments verify the influence of adaptive parameters on the model accuracy and adaptive performance, and show the model-emulating effects under various operating conditions. The comparison of SOC error estimation applying the extended Kalman filter (EKF) between the battery adaptive parameters model and the static parameter PNGV model verifies the effectiveness of the adaptive parameters model.

     

/

返回文章
返回