基于传感器网络的多信道定位技术

肖金超, 曾鹏, 何杰, 于海斌

肖金超, 曾鹏, 何杰, 于海斌. 基于传感器网络的多信道定位技术[J]. 信息与控制, 2015, 44(3): 346-352. DOI: 10.13976/j.cnki.xk.2015.0346
引用本文: 肖金超, 曾鹏, 何杰, 于海斌. 基于传感器网络的多信道定位技术[J]. 信息与控制, 2015, 44(3): 346-352. DOI: 10.13976/j.cnki.xk.2015.0346
XIAO Jinchao, ZENG Peng, HE Jie, YU Haibin. Multi-channel Localization Technology Based on Sensor Networks[J]. INFORMATION AND CONTROL, 2015, 44(3): 346-352. DOI: 10.13976/j.cnki.xk.2015.0346
Citation: XIAO Jinchao, ZENG Peng, HE Jie, YU Haibin. Multi-channel Localization Technology Based on Sensor Networks[J]. INFORMATION AND CONTROL, 2015, 44(3): 346-352. DOI: 10.13976/j.cnki.xk.2015.0346
肖金超, 曾鹏, 何杰, 于海斌. 基于传感器网络的多信道定位技术[J]. 信息与控制, 2015, 44(3): 346-352. CSTR: 32166.14.xk.2015.0346
引用本文: 肖金超, 曾鹏, 何杰, 于海斌. 基于传感器网络的多信道定位技术[J]. 信息与控制, 2015, 44(3): 346-352. CSTR: 32166.14.xk.2015.0346
XIAO Jinchao, ZENG Peng, HE Jie, YU Haibin. Multi-channel Localization Technology Based on Sensor Networks[J]. INFORMATION AND CONTROL, 2015, 44(3): 346-352. CSTR: 32166.14.xk.2015.0346
Citation: XIAO Jinchao, ZENG Peng, HE Jie, YU Haibin. Multi-channel Localization Technology Based on Sensor Networks[J]. INFORMATION AND CONTROL, 2015, 44(3): 346-352. CSTR: 32166.14.xk.2015.0346

基于传感器网络的多信道定位技术

基金项目: 广东省自然科学基金资助项目(2014A030310267)
详细信息
    作者简介:

    肖金超(1982-),男,博士,助理研究员.研究领域为无线传感器网络,工业通信.
    曾鹏(1976-),男,博士,研究员.研究领域为无线传感器网络,工业通信.
    何杰(1985-),男,硕士,助理研究员.研究领域为无线传感器网络,工业通信.

    通讯作者:

    曾鹏,zp@sia.cn

  • 中图分类号: TP393

Multi-channel Localization Technology Based on Sensor Networks

  • 摘要: 针对无线传感器网络中的信号强度随信道和位置的变化特征进行研究,通过理论分析和实验验证的方式刻画了信号强度与信道、位置之间的关系.在此基础上,提出了使用多信道信号强度分布中心值进行定位的方法.实验结果表明,本文使用的方法可以提高测距和定位的精度,同时避免了复杂的运算过程,适合在现有的无线传感器网络上应用.
    Abstract: Characteristic relationships between the wireless sensor network's signal strength and the change in channel and position are studied. First, relationships between the signal intensity, channel and location are depicted and then verified by theoretical and experimental analysis. Thereafter, a positioning approach is proposed by using the center value of the multi-channel signal's intensity distribution. Experimental results show that the proposed method can improve the distance measurement and localization accuracy while avoiding complicated operations and is suitable for application to existing wireless sensor networks.
  • [1] He X, Xiao Y, Wang Y. A LSSVR three-dimensional WSN nodes location algorithm based on RSSI[C]//2011 International Conference on Electrical and Control Engineering. Piscataway, NJ, USA: IEEE, 2011: 1889-1895.
    [2] Wang J Y, Chen C P, Lin T S, et al. High-precision RSSI-based indoor localization using a transmission power adjustment strategy for wireless sensor networks[C]//2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems. Piscataway, NJ, USA: IEEE, 2012: 1634-1638.
    [3] 高国胜, 陈俊杰, 李刚. 基于RSSI测距的信标节点自校正定位算法[J]. 测控技术, 2009, 28(8): 93-97. Gao G S, Chen J J, Li G. Beacon node self-tuning localization algorithm based on RSSI[J]. Measurement & Control Technology, 2009, 28(8): 93-97.
    [4] Wang J, Ghosh R K, Das S K. A survey on sensor localization[J]. Journal of Control Theory and Applications, 2010, 8(1): 2-11.
    [5] Pal A. Localization algorithms in wireless sensor networks: Current approaches and future challenges[J]. Network Protocols and Algorithms, 2010, 2(1): 45-73.
    [6] Kuriakose J, Joshi S, Raju R V, et al. A review on localization in wireless sensor networks[M]//Advances in Signal Processing and Intelligent Recognition Systems. Berlin, Germany: Springer, 2014: 599-610.
    [7] 刘颖, 苏俊峰, 朱明强. 基于迭代容积粒子滤波的蒙特卡洛定位算法[J]. 信息与控制, 2013, 42(5): 632-638. Liu Y, Su J F, Zhu M Q. A Monte-Carlo localization algorithm based on iterated cubature particle filter[J]. Information and Control, 2013, 42(5): 632-638.
    [8] Zhang J, Wu Y H, Shi F, et al. Localization algorithm based on DV-HOP for wireless sensor networks[J]. Journal of Computer Applications, 2010, 30(2): 323-326.
    [9] Priwgharm R, Srivilas K, Cherntanomwong P. Indoor localization system using RSSI measurement in wireless sensor networks based on ZigBee standard[C]//The 3rd National Conference on Information Technology. Piscataway, NJ, USA: IEEE, 2010: 225-228.
    [10] Anzai D, Hara S. An RSSI-based MAP localization method with channel parameters estimation in wireless sensor networks[C]//Proceedirgs of the 69th IEEE Conference on Vehicular Technology. Piscataway, NJ, USA: IEEE, 2009: 1-5.
    [11] Yang S, Yi J, Cha H. HCRL: A hop-count-ratio based localization in wireless sensor networks[C]//4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. Piscataway, NJ, USA: IEEE, 2007: 31-40.
    [12] Ma D, Er M J, Wang B, et al. Range-free wireless sensor networks localization based on hop-count quantization[J]. Telecommunication Systems, 2012, 50(3): 199-213.
    [13] Gao L, Zhu M, Yang D. Simulation and implement of weighted centroid localization algorithm based on ZigBee[J]. Chinese Journal of Sensors and Actuators, 2010, 23(1): 30-32.
    [14] Priwgharm R, Chemtanomwong P. A comparative study on indoor localization based on RSSI measurement in wireless sensor network[C]//2011 Eighth International Joint Conference on Computer Science and Software Engineering. Piscataway, NJ, USA: IEEE, 2011: 1-6.
    [15] Dieng N A, Charbit M, Chaudet C, et al. A multi-path data exclusion model for RSSI-based indoor localization[C]//2012 15th International Symposium on Wireless Personal Multimedia Communications. Piscataway, NJ, USA: IEEE, 2012: 336-340.
    [16] 任维政, 徐连明, 邹德君, 等. 基于RSSI差分似然估计的WSN节点定位算法[J]. 数据采集与处理, 2009(6): 757-761. Ren W Z, Xu L M, Zou D J, et al. Positioning algorithm using maximum likelihood estimation of RSSI difference in wireless sensor networks[J]. Journal of Data Acquisition and Processing, 2009(6): 757-761.
    [17] Dong Q, Dargie W. Evaluation of the reliability of RSSI for indoor localization[C]//2012 International Conference on Wireless Communications in Unusual and Confined Areas. Piscataway, NJ, USA: IEEE, 2012: 1-6.
    [18] 沈军, 黄春华, 罗护, 等. 基于RSSI优化的模型参数实时估计定位算法[J]. 计算机工程与设计, 2012, 33(2): 464-468. Shen J, Huang C H, Luo H, et al. Localization algorithm of model parameters real-time estimate based on RSSI optimized[J]. Computer Engineering and Design, 2012, 33(2): 464-468.
    [19] 章坚武, 张璐, 应瑛, 等. 基于ZigBee的RSSI测距研究[J]. 传感技术学报, 2009, 22(2): 285-288. Zhang J W, Zhang L, Ying Y, et al. Research on distance measurement based on RSSI of ZigBee[J]. Chinese Journal of Sensors and Actuators, 2009, 22(2): 285-288.
    [20] Luo X, O'brien W J, Julien C L. Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites[J]. Advanced Engineering Informatics, 2011, 25(2): 355-363.
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  1
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-23
  • 发布日期:  2015-06-19

目录

    /

    返回文章
    返回
    x