[1] |
Manum H, Skogestad S. Self-optimizing control with active set changes[J]. Journal of Process Control, 2012, 22(5): 873-883.
|
[2] |
Yelchuru R, Skogestad S. Convex formulations for optimal selection of controlled variables and measurements using mixed integer quadratic programming[J]. Journal of Process Control, 2012, 22(6): 995-1007.
|
[3] |
Sequeira S, Graells M, Puigjaner L. On-line process optimization: Parameter tuning for the real time evolution (RTE) approach[J]. Computers & Chemical Engineering, 2004, 28(2): 343-349.
|
[4] |
Gao W H, Sebastian E. Iterative set-point optimization of batch chromatographia[J]. Computer & Chemical Engineering, 2004, 18(3): 661-666.
|
[5] |
Skogestad S. Plantwide control: the search for the self-optimizing control structure[J]. Journal of Process Control, 2000, 10(5): 487-507.
|
[6] |
Bonvin D, Srinivasan B. Optimal grade transition for polyethylene reactors via NCO tracking[J]. Chemical Engineering Research and Design, 2005, 83(6): 692-697.
|
[7] |
Cao Y, Kariwala V. Bidirectional branch and bound for controlled variable selection, Part Ⅱ: Exact local method for self-optimizing control[J]. Computers & Chemical Engineering, 2009, 33(8): 1402-1412.
|
[8] |
Francois G, Srinivasan B. Use of measurement for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty[J]. Journal of Process Control, 2005, 15(6): 701-712.
|
[9] |
Bonvin D, Srinivasan B. On the role of the necessary conditions of optimality in structuring dynamic real-time optimization schemes[J]. Computers & Chemical Engineering, 2013, 51(3): 172-180.
|
[10] |
Mohammad H R, Nasser S. Hierarchical optimal control of large-scale nonlinear chemical processes[J]. ISA Transactions, 2009, 48(2): 38-47.
|
[11] |
Jaschke J, Skogestad S. NCO tracking and self-optimizing control in the context of real-time optimization[J]. Journal of Process Control, 2011, 21(10): 1407-1416.
|
[12] |
Ye L, Li Y, Song Z. New approach for constructing controlled variables for chemical processes[J]. Chinese Journal of Chemical Engineering, 2011, 62(8): 2221-2226.
|
[13] |
Yip W S, Marlin T S. The effect of model fidelity on real-time optimization performance[J]. Computers & Chemical Engineering, 2004, 28(2): 267-280.
|
[14] |
Panahi M, Skogestad S. Economically efficient operation of CO2 capturing process Part Ⅰ: Self-optimizing procedure for selecting the best controlled variables[J]. Chemical Engineering and Processing, 2011, 50(3): 247-253.
|
[15] |
Hu W, Umar L, Xiao G. Local self-optimizing control of constrained processes[J]. Journal of Process Control, 2012, 22(2): 488-493.
|
[16] |
Rasmussen C E, Christopher K I. Gaussian processes for machine learning[M]. Cambridge, MS, USA: the MIT Press, 2005.
|
[17] |
Kristjan A, Jus K. Nonlinear predictive control for models with local information and uncertainties[J]. Transactions of the Institute of Measurement and Control, 2008, 30(5): 371-396.
|
[18] |
Bojan L, Kocijan J. Predictive control of a gas-liquid separation plant based on a Gaussian process model[J]. Computers & Chemical Engineering, 2007, 31(3): 142-152.
|
[19] |
Kocijan J, Murray-Smith R. Gaussian process model identification: A process engineering case study[J]. Systems Science, 2008, 34(3): 31-38.
|
[20] |
Azman K, Kocijan J. Dynamical systems identification using Gaussian process models with incorporated local models[J]. Engineering Applications of Artificial Intelligence, 2011, 24(2): 398-408.
|