面向过程经济性能优化的最优性条件在线预测与实现

沈俊鹏, 黄静雯, 李宏光, 刘操

沈俊鹏, 黄静雯, 李宏光, 刘操. 面向过程经济性能优化的最优性条件在线预测与实现[J]. 信息与控制, 2015, 44(4): 449-454. DOI: 10.13976/j.cnki.xk.2015.0449
引用本文: 沈俊鹏, 黄静雯, 李宏光, 刘操. 面向过程经济性能优化的最优性条件在线预测与实现[J]. 信息与控制, 2015, 44(4): 449-454. DOI: 10.13976/j.cnki.xk.2015.0449
SHEN Junpeng, HUANG Jingwen, LI Hongguang, LIU Cao. An On-line Prediction and Implementation of Necessary Conditions of Optimality towards Process Economic Optimization[J]. INFORMATION AND CONTROL, 2015, 44(4): 449-454. DOI: 10.13976/j.cnki.xk.2015.0449
Citation: SHEN Junpeng, HUANG Jingwen, LI Hongguang, LIU Cao. An On-line Prediction and Implementation of Necessary Conditions of Optimality towards Process Economic Optimization[J]. INFORMATION AND CONTROL, 2015, 44(4): 449-454. DOI: 10.13976/j.cnki.xk.2015.0449
沈俊鹏, 黄静雯, 李宏光, 刘操. 面向过程经济性能优化的最优性条件在线预测与实现[J]. 信息与控制, 2015, 44(4): 449-454. CSTR: 32166.14.xk.2015.0449
引用本文: 沈俊鹏, 黄静雯, 李宏光, 刘操. 面向过程经济性能优化的最优性条件在线预测与实现[J]. 信息与控制, 2015, 44(4): 449-454. CSTR: 32166.14.xk.2015.0449
SHEN Junpeng, HUANG Jingwen, LI Hongguang, LIU Cao. An On-line Prediction and Implementation of Necessary Conditions of Optimality towards Process Economic Optimization[J]. INFORMATION AND CONTROL, 2015, 44(4): 449-454. CSTR: 32166.14.xk.2015.0449
Citation: SHEN Junpeng, HUANG Jingwen, LI Hongguang, LIU Cao. An On-line Prediction and Implementation of Necessary Conditions of Optimality towards Process Economic Optimization[J]. INFORMATION AND CONTROL, 2015, 44(4): 449-454. CSTR: 32166.14.xk.2015.0449

面向过程经济性能优化的最优性条件在线预测与实现

基金项目: 中央高校基本科研业务费专项基金资助项目(YS1404);国家质检总局科技计划资助项目(2015IK048)
详细信息
    作者简介:

    沈俊鹏(1988-),男,硕士.研究领域为大系统分解,过程优化与控制.
    黄静雯(1981-),女,博士,讲师.研究领域为全厂过程实时优化,控制理论与应用,智能控制.
    李宏光(1963-),男,教授,博士生导师.研究领域为智能协调与优化控制,过程报警优化与管理,情感交互多目标优化与决策.

    通讯作者:

    李宏光,lihg@mail.buct.edu.cn

  • 中图分类号: TP273

An On-line Prediction and Implementation of Necessary Conditions of Optimality towards Process Economic Optimization

  • 摘要: 选择包含系统的约束条件和梯度信息的最优性条件(necessary conditions of optimality,NCO)作为控制系统的实现目标,可以从结构设计角度有效地提高生产过程的经济性能.针对NCO在线不易直接测量、离线估计不及时和不准确等问题,提出了一类基于高斯过程的NCO建模、预测及控制方法.通过生产过程实时数据在线动态更新高斯过程模型,实时准确预测NCO的值,以决策下一时刻的最优控制率,实现生产过程对经济性能最优值的跟踪.对一个化工过程实例进行了仿真,结果验证了该方法的有效性.
    Abstract: The economic performance of plants can be effectively improved in terms of control system structure optimization through the selection of necessary conditions of optimality (NCOs), including constraint and gradient information, as the implementation targets of control systems. In response to the difficulties in direct online measurements and in timely and accurate offline estimations of NCOs, a novel approach to NCO modeling, prediction, and control based on a Gaussian process is proposed. To process real-time data, the proposed process can update the Gaussian process model dynamically online and the NCOs can be accurately predicted to enable the best decision of the optimal control rate for the next moment, thereby enabling process economic performance to achieve optimality. The proposed approaches are applied to an exemplary chemical process simulation, and the results show the effectiveness of the proposed method.
  • [1] Manum H, Skogestad S. Self-optimizing control with active set changes[J]. Journal of Process Control, 2012, 22(5): 873-883.
    [2] Yelchuru R, Skogestad S. Convex formulations for optimal selection of controlled variables and measurements using mixed integer quadratic programming[J]. Journal of Process Control, 2012, 22(6): 995-1007.
    [3] Sequeira S, Graells M, Puigjaner L. On-line process optimization: Parameter tuning for the real time evolution (RTE) approach[J]. Computers & Chemical Engineering, 2004, 28(2): 343-349.
    [4] Gao W H, Sebastian E. Iterative set-point optimization of batch chromatographia[J]. Computer & Chemical Engineering, 2004, 18(3): 661-666.
    [5] Skogestad S. Plantwide control: the search for the self-optimizing control structure[J]. Journal of Process Control, 2000, 10(5): 487-507.
    [6] Bonvin D, Srinivasan B. Optimal grade transition for polyethylene reactors via NCO tracking[J]. Chemical Engineering Research and Design, 2005, 83(6): 692-697.
    [7] Cao Y, Kariwala V. Bidirectional branch and bound for controlled variable selection, Part Ⅱ: Exact local method for self-optimizing control[J]. Computers & Chemical Engineering, 2009, 33(8): 1402-1412.
    [8] Francois G, Srinivasan B. Use of measurement for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty[J]. Journal of Process Control, 2005, 15(6): 701-712.
    [9] Bonvin D, Srinivasan B. On the role of the necessary conditions of optimality in structuring dynamic real-time optimization schemes[J]. Computers & Chemical Engineering, 2013, 51(3): 172-180.
    [10] Mohammad H R, Nasser S. Hierarchical optimal control of large-scale nonlinear chemical processes[J]. ISA Transactions, 2009, 48(2): 38-47.
    [11] Jaschke J, Skogestad S. NCO tracking and self-optimizing control in the context of real-time optimization[J]. Journal of Process Control, 2011, 21(10): 1407-1416.
    [12] Ye L, Li Y, Song Z. New approach for constructing controlled variables for chemical processes[J]. Chinese Journal of Chemical Engineering, 2011, 62(8): 2221-2226.
    [13] Yip W S, Marlin T S. The effect of model fidelity on real-time optimization performance[J]. Computers & Chemical Engineering, 2004, 28(2): 267-280.
    [14] Panahi M, Skogestad S. Economically efficient operation of CO2 capturing process Part Ⅰ: Self-optimizing procedure for selecting the best controlled variables[J]. Chemical Engineering and Processing, 2011, 50(3): 247-253.
    [15] Hu W, Umar L, Xiao G. Local self-optimizing control of constrained processes[J]. Journal of Process Control, 2012, 22(2): 488-493.
    [16] Rasmussen C E, Christopher K I. Gaussian processes for machine learning[M]. Cambridge, MS, USA: the MIT Press, 2005.
    [17] Kristjan A, Jus K. Nonlinear predictive control for models with local information and uncertainties[J]. Transactions of the Institute of Measurement and Control, 2008, 30(5): 371-396.
    [18] Bojan L, Kocijan J. Predictive control of a gas-liquid separation plant based on a Gaussian process model[J]. Computers & Chemical Engineering, 2007, 31(3): 142-152.
    [19] Kocijan J, Murray-Smith R. Gaussian process model identification: A process engineering case study[J]. Systems Science, 2008, 34(3): 31-38.
    [20] Azman K, Kocijan J. Dynamical systems identification using Gaussian process models with incorporated local models[J]. Engineering Applications of Artificial Intelligence, 2011, 24(2): 398-408.
计量
  • 文章访问数:  857
  • HTML全文浏览量:  0
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-14
  • 发布日期:  2015-08-19

目录

    /

    返回文章
    返回
    x