广义切线混沌优化算法及其应用

Generalized Tangent-Chaos Optimization Algorithm and Its Application

  • 摘要: 针对群体智能算法理论基础、缺乏普遍意义的理论分析等问题,提出了一种高性能的广义切线混沌优化算法(GTC).该算法是基于空间域搜索的寻优算法,利用广义切线法、混沌算子和空间域搜索的特性来提高算法的全局寻优能力和收敛速度.为验证该算法的性能,与非线性递减权重粒子群算法(NDWPSO)、人工鱼群算法(AFSA)和实数编码的遗传算法(GA)进行对比,分别对3个测试函数、PID参数整定和一个高度非线性系统参数估计三个实例进行分析比较.研究结果表明,所提出的广义切线混沌算法具有大范围搜寻空间内的全局优化能力和快速收敛性.

     

    Abstract: The theoretical foundation of swarm intelligence algorithms is relatively weak, and a general theoretical analysis has not yet been conducted. Thus, this study proposes a high-performance generalized tangent-chaos (GTC) optimization algorithm based on the spatial domain. In the algorithm, characteristics of the generalized tangent method, chaos operator, and searching in the spatial domain are applied to enhance the global search ability and convergence speed. To verify the performance of the GTC optimization algorithm, it is compared with the nonlinearly decreasing weight PSO, artificial fish school algorithm, and real-coded genetic algorithm. Three well-known benchmark functions, the tuning of PID controller parameters, and the parameter estimation of a highly nonlinear system are utilized to test the ability of the GTC optimization algorithm. Results show that the proposed GTC optimization algorithm has excellent global optimization performance and convergence speed.

     

/

返回文章
返回