一种基于多示例学习的局部离群点检测算法

Local Outlier Detection Algorithm Based on Multi-instance Learning

  • 摘要: 提出了一种基于多示例学习(multi-instance learning,MIL)的局部离群点检测算法,称之为MIL-LOF(a local outlier factor based on multi-instance learning).算法采用MIL框架,首先将真实对象提取为多示例形式,然后运用退化策略和权重调整方法,计算综合离群点因子,最后检测离群点.在实际企业监控数据以及公共数据集上将MIL-LOF与经典局部离群点检测算法及其优化算法进行了对比实验,结果表明本文提出的MIL-LOF算法在准确性、全面性及高效性上相对其他算法均可获得较为明显的提高.

     

    Abstract: In this paper, we propose a local outlier detection algorithm based on multi-instance learning (LOF-MIL). In our approach, polysemous objects are abstracted to a multi-instance using an MIL framework, then the MIL-LOF calculates the comprehensive outlier factor and detects outliers by adopting degradation strategies and making weight adjustments. We compared our approach with the classic local outlier detection algorithm and its optimization algorithm on both public and real data sets. Experimental results show that our method achieves better accuracy, comprehesiveness, and efficiency.

     

/

返回文章
返回