基于CPCRLB和一致性算法的分散式传感器管理

Decentralized Sensor Management Based on the CPCRLB and Consensus Algorithm

  • 摘要: 针对无线传感器网络中的目标跟踪问题,基于条件后验克拉美—罗下界(CPCRLB)提出一种分散式传感器节点管理方法.基于一致性策略给出一种CPCRLB的分布式迭代算法,并且基于分布式粒子滤波器给出该算法的数值逼近实现.对层次结构的无线传感器网络,将CPCRLB作为传感器管理的准则,基于平均一致性给出一种迭代的局部搜索算法,实现了无线传感器网络下观测节点的分散式在线选择.仿真结果表明了基于CPCRLB的分散式传感器管理方法在目标跟踪精度方面的有效性.

     

    Abstract: We present a decentralized sensor node management scheme based on the conditional posterior Cramér-Rao lower bounds(CPCRLB) in order to achieve target tracking in wireless sensor networks(WSNs). We propose a distributed iterative algorithm of the CPCRLB based on the consensus algorithm. The numerical approximation implementation of the proposed algorithm is obtained using distributed particle filter, and the distributed CPCRLB is used as a criterion for the selection of the optimal sensor nodes in the hierarchical WSN. We propose an efficient iterative local search algorithm based on average consensus strategy, which achieves the online decentralized selection of sensor nodes. The simulation results show that the proposed CPCRLB-based decentralized sensor management method can achieve accurate target tracking.

     

/

返回文章
返回