基于自适应模糊滑模控制的船舶航向控制器设计

刘文江, 隋青美, 周风余, 肖海荣

刘文江, 隋青美, 周风余, 肖海荣. 基于自适应模糊滑模控制的船舶航向控制器设计[J]. 信息与控制, 2012, (2): 136-141. DOI: 10.3724/SP.J.1219.2012.00136
引用本文: 刘文江, 隋青美, 周风余, 肖海荣. 基于自适应模糊滑模控制的船舶航向控制器设计[J]. 信息与控制, 2012, (2): 136-141. DOI: 10.3724/SP.J.1219.2012.00136
LIU Wenjiang, SUI Qingmei, ZHOU Fengyu, XIAO Hairong. Controller Design Based on Adaptive Fuzzy Sliding Mode Control for Ship Course[J]. INFORMATION AND CONTROL, 2012, (2): 136-141. DOI: 10.3724/SP.J.1219.2012.00136
Citation: LIU Wenjiang, SUI Qingmei, ZHOU Fengyu, XIAO Hairong. Controller Design Based on Adaptive Fuzzy Sliding Mode Control for Ship Course[J]. INFORMATION AND CONTROL, 2012, (2): 136-141. DOI: 10.3724/SP.J.1219.2012.00136
刘文江, 隋青美, 周风余, 肖海荣. 基于自适应模糊滑模控制的船舶航向控制器设计[J]. 信息与控制, 2012, (2): 136-141. CSTR: 32166.14.xk.2012.00136
引用本文: 刘文江, 隋青美, 周风余, 肖海荣. 基于自适应模糊滑模控制的船舶航向控制器设计[J]. 信息与控制, 2012, (2): 136-141. CSTR: 32166.14.xk.2012.00136
LIU Wenjiang, SUI Qingmei, ZHOU Fengyu, XIAO Hairong. Controller Design Based on Adaptive Fuzzy Sliding Mode Control for Ship Course[J]. INFORMATION AND CONTROL, 2012, (2): 136-141. CSTR: 32166.14.xk.2012.00136
Citation: LIU Wenjiang, SUI Qingmei, ZHOU Fengyu, XIAO Hairong. Controller Design Based on Adaptive Fuzzy Sliding Mode Control for Ship Course[J]. INFORMATION AND CONTROL, 2012, (2): 136-141. CSTR: 32166.14.xk.2012.00136

基于自适应模糊滑模控制的船舶航向控制器设计

基金项目: 山东省自然科学基金资助项目(ZR2009FL013);山东省高校科技计划资助项目(J11LG76)
详细信息
  • 中图分类号: U675.91,TP273

Controller Design Based on Adaptive Fuzzy Sliding Mode Control for Ship Course

  • 摘要: 针对船舶运动系统中固有的非线性、模型不确定性和风、浪、流等的干扰,提出了自适应模糊滑模控制(AFSMC)策略解决船舶的航向控制问题. 通过采用模糊逻辑系统逼近系统未知函数,将滑模控制技术与自适应模糊控制技术相结合,设计了船舶航向AFSMC控制器. 在滑模边界层内应用PI(proportional-integral)控制代替滑模控制中的切换项,削弱了滑模控制带来的抖振现象.借助李亚普诺夫函数证明了船舶运动系统中的信号都一致有界并利用Barbalat引理证明了跟踪误差渐近收敛到零. 在参数摄动和外界干扰情况下进行了航向保持与改变仿真试验,采用AFSMC控制器得到了与无摄动和无干扰情况下相似的输出响应. 实验结果表明,所提控制器能有效地处理系统不确定性和外界干扰,控制性能良好,具有很强的鲁棒性.
    Abstract: Considering the nonlinear characteristics, modeling uncertainties and external disturbances such as wind, wave and flow in ship motion systems, an adaptive fuzzy sliding mode control (AFSMC) technology is presented to solve the ship course control problem. The fuzzy logic system is used to approximate the unknown system function and the adaptive fuzzy sliding mode controller is designed by combining sliding mode control technology with adaptive fuzzy control technology. The chattering problem of sliding mode control is relieved by adopting PI (proportional-integral) control instead of sliding mode control switching items within the boundary layer. Based on the Lyapunov function, it is theoretically proved that the controller makes all signals in the system of ship motion uniformly bounded, and using Barbalat's lemma, the tracking errors converge to zero. Simulation experiments on the course keeping and change in the presence of parameter perturbation and environment disturbances are conducted, and similar output responses with those under no perturbation and no interference circumstances by the controller based on AFSMC are obtained. The experiment results show that the proposed controller can handle system uncertainties and external disturbances effectively, and has superior controlling performance and strong robustness.
  • [1] Fossen T I. Guidance and control of ocean vehicles[M]. Hoboken, NJ, USA: John Wiley & Sons Inc., 1994.
    [2] Hu S S, Yang P H, Juang J Y, et al. Robust nonlinear ship course-keeping control by H I/O linearization and μ -synthesis[J]. International Journal of Robust and Nonlinear Control, 2003, 13(1): 55-70.
    [3] Zhang Y, Hearn G E, Sen P. A neural network approach to ship track-keeping control[J]. IEEE Journal of Oceanic Engineering, 1996, 21(4): 513-527.
    [4] Fang M C, Luo J H. On the track keeping and roll reduction of the ship in random waves using different sliding mode controllers[J]. Ocean Engineering, 2007, 34(3/4): 479-488.
    [5] 高健,陈高阳.船舶航向模糊滑模控制及仿真[J].江苏科技大学学报:自然科学版,2010,24(4): 372-376. Gao J, Chen G Y. Fuzzy sliding mode control and simulation for ship's course steering[J]. Journal of Jiangsu University of Science and Technology: Natural Science Edition, 2010, 24(4): 372-376.
    [6] Velagic J, Vukic Z, Omerdic E. Adaptive fuzzy ship autopilot for track-keeping[J]. Control Engineering Practice, 2003, 11(4): 433-443.
    [7] 李铁山,杨盐生,洪碧光,等.船舶航迹控制鲁棒自适应模糊设计[J].控制理论与应用,2007,24(3): 445-448. Li T S, Yang Y S, Hong B G, et al. Robust adaptive fuzzy design for ships track-keeping control[J]. Control Theory and Applications, 2007, 24(3): 445-448.
    [8] Ho H F, Wong Y K, Rad A B. Adaptive fuzzy sliding mode control design: Lyapunov approach[C]//5th Asian Control Conference. Piscataway, NJ, USA: IEEE, 2004: 1502-1507.
    [9] Wai R J, Lin C M, Hsu C F. Adaptive fuzzy sliding-mode control for electrical servo drive[J]. Fuzzy Sets and Systems, 2004, 143(2): 295-310.
    [10] Moghaddam J J, Bagheri A. An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle[J]. Expert Systems with Applications, 2010, 37(1): 647-660.
    [11] Wang L X. Stable adaptive fuzzy control of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 146-155.
    [12] 周风余,王伟,单金明.基于ADRC的船舶航向控制器设计与仿真研究[J].山东大学学报:工学版,2009,39(1): 57-63. Zhou F Y, Wang W, Shan J M. Research on design and simulation of ship course controller based on ADRC[J]. Journal of Shandong University: Engineering Science, 2009, 39(1): 57-63.
计量
  • 文章访问数:  2421
  • HTML全文浏览量:  2
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-05
  • 发布日期:  2012-04-19

目录

    /

    返回文章
    返回
    x