HE Xinjie, ZHOU Shaowu, ZHANG Hongqian, ZHOU You. A 3D Parallel Multi-target Search Coordination Control Strategy for Swarm UAVS[J]. INFORMATION AND CONTROL, 2020, 49(5): 605-614. DOI: 10.13976/j.cnki.xk.2020.9463
Citation: HE Xinjie, ZHOU Shaowu, ZHANG Hongqian, ZHOU You. A 3D Parallel Multi-target Search Coordination Control Strategy for Swarm UAVS[J]. INFORMATION AND CONTROL, 2020, 49(5): 605-614. DOI: 10.13976/j.cnki.xk.2020.9463

A 3D Parallel Multi-target Search Coordination Control Strategy for Swarm UAVS

More Information
  • Received Date: August 21, 2019
  • Revised Date: January 09, 2020
  • Accepted Date: December 04, 2019
  • Available Online: December 01, 2022
  • Published Date: October 19, 2020
  • A parallel coordinated search control strategy of 3D swarm unmanned aerial vehicle (UAV) is proposed to solve the multi-target search problem in an unknown environment. First, two strategies-closed-up regulation and cooperation are introduced with the use of the self-organizing task division of the target response threshold-based swarm robots. An improved target response threshold self-organizing task division mode of seed group size homogenization is proposed to handle the problem of uneven distribution of UAVS subgroups, such that the efficiency of parallel search of UAVS can be implicitly improved. Second, the coordinated control algorithm of swarm robot based on 2D extended particle swarm optimization is applied to 3D swarm UAV, whereby an improved adaptive inertia weight is developed, and a 3D extended particle swarm optimization with an improved adaptive inertia weight (IAEPSO) is proposed to alleviate the local optimum problem and low searching efficiency. Finally, two improved methods (ITRT+IAEPSO) are used in the parallel search of swarm UAVS. Compared with the traditional parallel multi-target search extended particle swarm optimization (TRT+EPSO), the proposed methods can reduce the search time and energy consumption of system and the numerical simulations are performed to verify the effectiveness of the proposed methods.

  • [1]
    Garnier S, Gautrais J, Theraulaz G. The biological principles of swarm intelligence[J]. Swarm Intelligence, 2007, 1(1):3-31. doi: 10.1007%2Fs11721-007-0004-y.pdf
    [2]
    Beni G. From swarm intelligence to swarm robotics[C]//Swarm Robotics, SAB 2004 International Workshop. Piscataway, NJ, USA: IEEE, 2004, 8(5): 12-18.
    [3]
    Brambilla M, Ferrante E, Birattari M, et al. Swarm robotics:A review from the swarm engineering perspective[J]. Swarm Intelligence, 2013, 7(1):1-41. http://www.sciencedirect.com/science/article/pii/S0262407910623573
    [4]
    Sauter J A, Matthews R, van Dyke Parunak H, et al. Performance of digital pheromones for swarming vehicle control[C]//4th International Conference on Autonomous Agent and Multi-agent Systems. New York, USA: ACM, 2005: 903
    [5]
    Doctor S, Venayagamoorthy G K, Gudise V G. Optimal PSO for collective robotics search applications[C]//Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2004: 1390-1395.
    [6]
    Ducatelle F, di Caro G A, Pinciroli C, et al. Communication assisted navigation in robotic swarms: Self-organization and cooperation[C]//IEEE/RSJ International Conference on Intelligence Robot and Systems. Piscataway, NJ, USA: IEEE, 2011: 4981-4988.
    [7]
    Derr K, Manic M. Multi-robot, multi-target particle swarm optimization search in noisy wireless environments[C]//2nd Conference on Human System Interaction, Piscataway, NJ, USA: IEEE, 2009: 81-86.
    [8]
    张云正, 薛颂东, 曾建潮.群机器人多目标搜索中带闭环调节的动态任务分工[J].机器人, 2014, 36(1):59-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jqr201401009

    Zhang Y Z, Xue S D, Zeng J C. Dynamic task allocation with closed-loop adjusting in swarm robot search for multiple targets[J]. Robot, 2014, 36(1):57-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jqr201401009
    [9]
    周少武, 张鑫, 张红强, 等.基于简化虚拟受力模型的群机器人多目标搜索协调控制[J].机器人, 2016, 38(6):641-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jqr201606001

    Zhou S W, Zhang X, Zhang H Q, et al. Coordinated control of swarm robot for multi-target search based on a simplified virtual-force model[J]. Robot, 2016, 38(6):641-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jqr201606001
    [10]
    张云正, 薛颂东, 曾建潮.群机器人多目标搜索中的合作协同和竞争协同[J].机器人, 2015, 37(2):142-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jqr201502003

    Zhang Y Z, Xue S D, Zeng J C. Cooperative and coordination in swarm robotic search for multiple targets[J]. Robot, 2015, 37(2):142-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jqr201502003
    [11]
    张晓莉, 王秦飞, 冀汶莉.一种改进的自适应惯性权重的粒子群算法[J].微电子学与计算机, 2019, 36(3):66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wdzxyjsj201903014

    Zhang X L, Wang Q F, Ji W L. An improved particle swarm optimization algorithm for adaptive inertial weights[J]. Microelectronics and Computer, 2019, 6(3):66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wdzxyjsj201903014
    [12]
    Mohapatra P, Nath Das K, Roy S. A modified competitive swarm optimizer for large scale optimization problems[J]. Applied Soft Computing, 2017, 59:340-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c7e87c4896e0f5f67c1abd19089adce
    [13]
    Gao Y, Zhang Y, Zhu S, et al. Multi-UAV task allocation based on improved algorithm of multi-objective particle swarm optimization[C]//International Conference on Cyber-enabled Distributed Computing & Knowledge Discovery Piscataway, NJ, USA: IEEE, 2018: 12-20.
    [14]
    Kinnebrew R, Shankaran J S, Shankaran N, et al. Toward effective multi-capacity resource allocation in distributed real-time and embedded systems[C]//IEEE International Symposium on Object Oriented Real-time Distributed Computing. Piscataway, NJ, USA: IEEE, 2018: 38-44.
    [15]
    Hexmoor H, Mclaughlan B, Baker M. Swarm control in unmanned aerial vehicles[C]//Proceedings of the 2015 International Conference on Artificial Intelligence. Las Vegas, Nevada, USA: ICAI, 2015.
    [16]
    Ali Moltajaei F, Simon E, Jan B K, et al. Adaptive multi-objective search in a swarm vs swarm context[C]//The 2018 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway, NJ, USA: IEEE, 2018: DOI: 10.1109/SMC.2018.00616.
    [17]
    符小卫, 李建, 高晓光.带通信约束的多无人机协同搜索中的目标分配[J].航空学报, 2014, 35(5):1347-1356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201405019

    Fu X W, Li J, Gao X G. Target allocation in multi-UAV cooperative search with communication constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1347-1356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201405019
    [18]
    刘重, 高晓光, 符小卫.带信息素回访机制的多无人机分布式协同目标搜索[J].系统工程与电子技术, 2017, 39(9):1998-2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201709014

    Liu Z, Gao X G, Fu X W. Multi-UAVS distributed cooperative search algorithm with controllable revisit mechanism based on digital pheromone[J]. Systems Engineering and Electronics, 2017, 39(9):1998-2011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201709014
    [19]
    Pugh J, Martinoli A. Inspiring and modeling multi-robot search with particle swarm optimization[C]//Proceedings of IEEE Swarm Intelligence Symposium. Piscataway, NJ, USA: IEEE, 2007: 1-5.
    [20]
    Xue S, Zhang J, Zeng J. Parallel asynchronous control strategy for target search with swarm robots[J]. International Journal of Bio-Inspired Computation, 2009, 1(3):151-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c95faea9715b9bebbf3c5eab20f83635
    [21]
    高尚, 汤可宗, 蒋新知, 等.粒子群优化算法收敛性分析[J].科学技术与工程, 2006(12):1625-1627. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc200612010

    Gao S, Tang K Z, Jiang X Z, et al. Analysis of convergence of particle swarm optimization algorithm[J]. Science Technology and Engineering, 2006(12):1625-1627. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc200612010
    [22]
    Lu J M, Lin Z H. A new RSA cryptosystem hardware implementation based on Montgomery's algorithm[J]. Journal of Shanghai Jiaotong University, 2012; E-7(1):46-49. http://d.wanfangdata.com.cn/Periodical_shjtdxxb-e200201010.aspx
  • Related Articles

    [1]ZHANG Hongqiang, JIANG Ping, WU Lianghong, WANG Xi, ZUO Cili, CHEN Zuguo, CHEN Liang. Cooperative Hunting by UAV Swarm in 3D Unknown Complex Environment[J]. INFORMATION AND CONTROL, 2024, 53(6): 723-738. DOI: 10.13976/j.cnki.xk.2023.3042
    [2]HUANG Zhifeng, LIU Yuanhua. Low Altitude Path Planning of Urban UAV Based on Improved Lion Swarm Optimization[J]. INFORMATION AND CONTROL, 2023, 52(6): 747-757, 772. DOI: 10.13976/j.cnki.xk.2023.2372
    [3]ZHENG Chengjie, ZHENG Zhi. 3D Point Cloud Classification Based on Maximum Classifier Discrepancy Domain Adaptation Method[J]. INFORMATION AND CONTROL, 2023, 52(5): 588-597. DOI: 10.13976/j.cnki.xk.2023.2317
    [4]WANG Miaomiao, WEI Guoliang, CAI Jie, LUAN Xiaozhen. Deviation Matrix Based for 3D SLAM Pose Graph Optimization[J]. INFORMATION AND CONTROL, 2023, 52(3): 334-342. DOI: 10.13976/j.cnki.xk.2023.2233
    [5]XUE Guanghui, LI Ruixue, ZHANG Zhenghao, LIU Rui. State-of-the-art and Tendency of SLAM Algorithms Based on 3D LiDAR[J]. INFORMATION AND CONTROL, 2023, 52(1): 18-36. DOI: 10.13976/j.cnki.xk.2023.2254
    [6]CAO Haiyan, FENG Gui, HAN Xue, YI Yincheng. 3D Video Watermarking Algorithm Based on Texture Complexity and Motion Direction[J]. INFORMATION AND CONTROL, 2019, 48(6): 666-671. DOI: 10.13976/j.cnki.xk.2019.9100
    [7]YU Xiaohuan, HAN Bo, ZHANG Yu, LI Ping. Binocular Stereo Vision Based 3D Mapping for Micro Aerial Vehicles in an Indoor Environment[J]. INFORMATION AND CONTROL, 2014, 43(4): 392-397. DOI: 10.13976/j.cnki.xk.2014.0392
    [8]ZHU Guang-yu. Particle Swarm Optimization Algorithm for Drilling Path Planning Problem[J]. INFORMATION AND CONTROL, 2008, 37(1): 103-107,112.
    [9]YE Gang-qiang, SUN Shi-yu, LIANG Yan, WANG Rui, PAN Quan. Particle Swarm Optimization Based on Dynamic Population Size[J]. INFORMATION AND CONTROL, 2008, 37(1): 18-27.
    [10]CHEN Guo-chu, YU Jin-shou. Particle Swarm Optimization Algorithm[J]. INFORMATION AND CONTROL, 2005, 34(3): 318-324.
  • Cited by

    Periodical cited type(6)

    1. 文汇闻,周少武,王汐,张红强. 复杂山地环境下无人机群应急搜救策略研究. 计算技术与自动化. 2024(03): 127-134 .
    2. 朱代武,刘豪,曾婧涵,孙永鹏. 指定域多无人机协同目标跟踪研究. 计算机测量与控制. 2023(03): 201-207 .
    3. 吴琼,张红强. 基于粒子群联盟的机器人多目标搜索路径控制. 计算机仿真. 2023(08): 426-429+529 .
    4. 潘楠,张淼寒,韩宇航,向泓宇,刘海石,殷实,潘地林. 面向城市巡防的多无人机协同航迹规划. 信息与控制. 2022(04): 411-422 . 本站查看
    5. 边晓荟,周少武,张红强,吴亮红,王汐,王茂,刘朝华,陈磊. 基于未知环境碰撞冲突预测的群机器人多目标搜索研究. 信息与控制. 2022(05): 573-586 . 本站查看
    6. 任彦,岳美霞,解东,王慧敏. 基于有限时间干扰观测器的多智能体系统的协同控制. 信息与控制. 2021(03): 343-349 . 本站查看

    Other cited types(8)

Catalog

    Article views (198) PDF downloads (186) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return