YU Xiaohuan, HAN Bo, ZHANG Yu, LI Ping. Binocular Stereo Vision Based 3D Mapping for Micro Aerial Vehicles in an Indoor Environment[J]. INFORMATION AND CONTROL, 2014, 43(4): 392-397. DOI: 10.13976/j.cnki.xk.2014.0392
Citation: YU Xiaohuan, HAN Bo, ZHANG Yu, LI Ping. Binocular Stereo Vision Based 3D Mapping for Micro Aerial Vehicles in an Indoor Environment[J]. INFORMATION AND CONTROL, 2014, 43(4): 392-397. DOI: 10.13976/j.cnki.xk.2014.0392

Binocular Stereo Vision Based 3D Mapping for Micro Aerial Vehicles in an Indoor Environment

More Information
  • Received Date: July 29, 2013
  • Revised Date: June 11, 2014
  • Published Date: August 19, 2014
  • In order to meet the demands of obstacle avoidance and path planning for micro aerial vehicle (MAV) in an indoor environment,we establish a low cost embedded binocular stereo vision platform based on a BeagleBoard-xM board and consumer-grade cameras. With the indoor environment information obtained through the binocular stereo vision system,based on a 3D space description model-octree and an inverse sensor model and combined with the attitude information of the MAV,we propose a 3D map-building method described with a 3D occupancy map. The result of the experiment shows that the 3D occupancy map acquired by embedded binocular stereo vision system described the indoor environment of MAV accurately and effectively. It can thus be used widely in unmanned aerial vehicle navigation in an indoor environment.
  • [1]
    Achtelik M,Bachrach A,He R,et al. Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments[C]//SPIE Conference on Unmanned Systems Technology XI. Orlando,Florida,USA: SPIE,2009: 733219-10.
    [2]
    Bachrach A,He R,Roy N. Autonomous flight in unknown indoor environments[J]. International Journal of Micro Air Vehicles,2009,1(4): 217-228.
    [3]
    Mason J,Ricco S,Parr R. Textured occupancy grids for monocular localization without features[C]//IEEE International Conference on Robotics and Automation. Piscataway,NJ,USA: IEEE,2011: 5800-5806.
    [4]
    Mirisola L G B,Lobo J,Dias J. 3D map registration using vision/laser and inertial sensing[C]//European Conference on Mobile Robots. 2007.
    [5]
    Hrabar S. Reactive obstacle avoidance for rotorcraft UAVs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,NJ,USA: IEEE,2011: 4967-4674.
    [6]
    Bradski G,Kaebler A. Learning OpenCV[M]. Sebastopol,USA: O'Reilly Media,Inc.,2008.
    [7]
    Kitt B,Geiger A,Lategahn H. Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme[C]//2010 IEEE Intelligent Vehicles Symposium (IV). Piscataway,NJ,USA: IEEE,2010: 486-492.
    [8]
    Lobo J,Dias J. Relative pose calibration between visual and inertial sensors[J]. International Journal of Robotics Research,2007,26(6): 561-575.
    [9]
    Bouguet J Y. Pyramidal implementation of the affine Lucas Kanade feature tracker description of the algorithm[R]. Santa Clara,CA,USA: Intel Corporation,2001.
    [10]
    杜歆. 用于导航的立体视觉系统[D]. 杭州: 浙江大学,2003.
    Du X. Stereo vision used for navigation[D]. Hangzhou: Zhejiang University,2003.
    [11]
    Morris W,Dryanovski I,Xiao J. 3D indoor mapping for micro-UAVs using hybrid range finders and multi-volume occupancy grids[C]//RSS 2010 Workshop on RGB-D: Advanced Reasoning with Depth Cameras. 2010.
    [12]
    Hornung A,Wurm K M,Bennewitz M,et al. OctoMap: An efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots,2013,34(3): 189-206.
    [13]
    Hrabar S. 3D path planning and stereo-based obstacle avoidence for rotorcraft UAVs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,NJ,USA: IEEE,2008: 807-814.
    [14]
    Heng L,Meier L,Tanskanen P,et al. Autonomous obstacle avoidance and maneuvering on a vision-guided MAV using on-board processing[C]//IEEE International Conference on Robotics and Automation. Piscataway,NJ,USA: IEEE,2011: 2472-2477.
    [15]
    Ferguson D,Stentz A. Field D*: An interpolation-based path planner and replanner [M]//Robotics Research. Berlin,Germany: Springer-Verlag,2007: 239-253.
    [16]
    Goldberg S B,Matthies L. Stereo and IMU assisted visual odometry on an OMAP3530 for small robots [C]//2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piscataway,NJ,USA: IEEE,2011: 169-176.
    [17]
    Izadi S,Kim D,Hilliges O,et al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera[C]//Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology. New York,NJ,USA: ACM,2011: 559-568.
  • Related Articles

    [1]ZHANG Hongqiang, JIANG Ping, WU Lianghong, WANG Xi, ZUO Cili, CHEN Zuguo, CHEN Liang. Cooperative Hunting by UAV Swarm in 3D Unknown Complex Environment[J]. INFORMATION AND CONTROL, 2024, 53(6): 723-738. DOI: 10.13976/j.cnki.xk.2023.3042
    [2]QI Zixi, LIU Xin, CHENG Lan, XU Xinying, YAN Gaowei. Framework for the Reconstruction and Localization of Radiological Areas Based on LVI-SAM in 3D Environments[J]. INFORMATION AND CONTROL, 2024, 53(6): 701-711. DOI: 10.13976/j.cnki.xk.2024.3343
    [3]WU Hongwei, LYU Dongsheng, JIA Lin. A Multi-object Tracking Algorithm for 3D LiDAR Point Cloud Processing[J]. INFORMATION AND CONTROL, 2024, 53(4): 508-519. DOI: 10.13976/j.cnki.xk.2024.4061
    [4]ZHENG Chengjie, ZHENG Zhi. 3D Point Cloud Classification Based on Maximum Classifier Discrepancy Domain Adaptation Method[J]. INFORMATION AND CONTROL, 2023, 52(5): 588-597. DOI: 10.13976/j.cnki.xk.2023.2317
    [5]WANG Miaomiao, WEI Guoliang, CAI Jie, LUAN Xiaozhen. Deviation Matrix Based for 3D SLAM Pose Graph Optimization[J]. INFORMATION AND CONTROL, 2023, 52(3): 334-342. DOI: 10.13976/j.cnki.xk.2023.2233
    [6]XUE Guanghui, LI Ruixue, ZHANG Zhenghao, LIU Rui. State-of-the-art and Tendency of SLAM Algorithms Based on 3D LiDAR[J]. INFORMATION AND CONTROL, 2023, 52(1): 18-36. DOI: 10.13976/j.cnki.xk.2023.2254
    [7]YANG Liu, XUE Can, XU Dongyang, WANG Zhi. Review of Soft Robots Spatial Sensing Technology[J]. INFORMATION AND CONTROL, 2022, 51(5): 513-532. DOI: 10.13976/j.cnki.xk.2022.2213
    [8]CAO Haiyan, FENG Gui, HAN Xue, YI Yincheng. 3D Video Watermarking Algorithm Based on Texture Complexity and Motion Direction[J]. INFORMATION AND CONTROL, 2019, 48(6): 666-671. DOI: 10.13976/j.cnki.xk.2019.9100
    [9]FAN Ya-ping, HUANG Sheng-xue, WEN Pei-zhi, SHI Ze-lin. A Skeletonization Method for 3D Model Based on Digital Distance Transform[J]. INFORMATION AND CONTROL, 2004, 33(6): 685-688,693.
    [10]WANG Tianzhen. RECONSTRUCTION IS NOT NECESSARY FOR COMPUTER VISION[J]. INFORMATION AND CONTROL, 1999, 28(1): 47-52.

Catalog

    Article views (1741) PDF downloads (1112) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return