Citation: | XUE Can, WANG Zhi. Cable Tunnel Personnel Positioning Technology Based on Acoustic Channel Analysis[J]. INFORMATION AND CONTROL, 2022, 51(2): 201-213. DOI: 10.13976/j.cnki.xk.2022.1571 |
Cable tunnels are completely satellite-rejected, and the electromagnetic channel state inside is complex. Therefore, traditional positioning methods are facing problems, such as declining positioning accuracy and increasing positioning variance. A high-precision personnel positioning in cable tunnels is proposed on the basis of channel model analysis and distance measurement by using the near ultrasound method. First, multiple sets of near ultrasound base stations are established in the tunnel, and their deployment is optimized through the finite element analysis method. Second, a statistical parameter model is established at the signal receiving side for dynamic changing of channel states due to target movement to estimate signal parameters quickly. Meanwhile, the received signal is also reconstructed in the fractional Fourier transform domain, and the moving speed of the target is estimated through the channel frequency shift state. Finally, the arrival time and moving speed estimated by the channel model are applied to track person position based on the Kalman filter. Simultaneously, the fusion arrival time estimation result is fed back to the channel parameter estimation of the next stage to correct the actual reference signal. Actual experimental results in the underground cable tunnel verify the effectiveness of the proposed method, which outperforms the traditional UWB positioning method.
[1] |
刘东, 张弘, 王建春. 主动配电网技术研究现状综述[J]. 电力工程技术, 2017, 36(4): 2-7, 20. doi: 10.3969/j.issn.1009-0665.2017.04.002
Liu D, Zhang H, Wang J C, et al. Survey of research status of active distribution network technology[J]. Electrical Engineering Technology, 2017, 36(4): 2-7, 20. doi: 10.3969/j.issn.1009-0665.2017.04.002
|
[2] |
刘增训, 游沛羽, 周勤勇. 适用高比例新能源系统广域消纳的输电技术研究综述[J]. 电力工程技术, 2020, 39(5): 59-70. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDJ202005012.htm
Liu Z X, You P Y, Zhou Q Y. An overview of research on transmission technology suitable for wide-area consumption of high-proportion new energy systems[J]. Electrical Engineering Technology, 2020, 39(5): 59-70. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDJ202005012.htm
|
[3] |
Laverty D M, Kelsey C, Raw J O. GNSS time signal spoofing detector for electrical substations[J]. IEEE Transactions on Smart Grid, 2021, 37(6): 1187-1188.
|
[4] |
Li Z, Luo L, Sheng G, et al. UHF partial discharge localisation method in substation based on dimension-reduced RSSI fingerprint[J]. IET Generation, Transmission & Distribution, 2018, 12(2): 398-405.
|
[5] |
Honma N, Tazawa R, Miura A, et al. RSS-based DOA/DOD estimation using bluetooth signal and its application for indoor tracking[C]//2018 International Conference on Indoor Positioning and Indoor Navigation. Piscataway, USA: IEEE, 2008. DOI: 10.1109/IPIN.2018.8533719.
|
[6] |
Li X, Wei D, Zhang W, Xu D, et al. Integrated PDR/GNSS at different times for pedestrian localization in urban canyon[J]. IEEE Access, 2021, 9: 22698-22710. doi: 10.1109/ACCESS.2021.3055485
|
[7] |
Han R, Liu L, Liu S, et al. Research and application of substation intelligent inspection technology based on multi spectral image recognition[C]//2020 IEEE International Conference on High Voltage Engineering and Application. Piscataway, USA: IEEE, 2020. DOI: 10.1109/ICHVE49031.2020.9279654.
|
[8] |
Sandoval R M, Garcia-Sanchez, Garcia-Haro J. Improving RSSI-based path-loss models accuracy for critical infrastructures: A smart grid substation case-study[J]. IEEE Transactions on Industrial Informatics, 2017, 14(5): 2230-2240.
|
[9] |
Tang R, Zhang T, Wei X, et al. An efficient numerical approach for field infrared smoke transmittance based on grayscale images[J]. Applied Sciences, 2018, 8(1): 40.
|
[10] |
Welburn E, Khalili Hakim H, Gupta A, et al. A navigational system for quadcopter remote inspection of offshore substations[C]//The Fifteenth International Conference on Autonomic and Autonomous Systems. Piscataway, USA: IEEE, 2019.
|
[11] |
Brena R F, García-Vázquez J P. Evolution of indoor positioning technologies: A survey[J]. Journal of Sensors, 2017, 40: 21-32
|
[12] |
Li Z, Zheng N, Wang J, et al. Performance comparison among different precise satellite ephemeris and clock products for PPP/INS/UWB tightly coupled positioning[J]. The Journal of Navigation, 2018, 71(3): 585-606. doi: 10.1017/S0373463317000856
|
[13] |
Cheng L, Chang H, Wang K X, et al. Real time indoor positioning system for smart grid based on UWB and artificial intelligence techniques[C]//2020 IEEE Conference on Technologies for Sustainability. Piscataway, USA: IEEE, 2020. DOI: 10.1109/SusTech47890.2020.9150486.
|
[14] |
Oloumi D, Rambabu K. Metal-cased oil well inspection using near-field UWB radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5884-5892.
|
[15] |
王小波, 等. 一种改进的UWB空间定位方法研究[J]. 电力工程技术, 2018. 37(3): 72-77. doi: 10.3969/j.issn.1009-0665.2018.03.013
Wang X B, et al. Research on an improved UWB space positioning method[J]. Electrical Engineering Technology, 2018, 37(3): 72-77. doi: 10.3969/j.issn.1009-0665.2018.03.013
|
[16] |
Zhang L, Chen M, Wang X, et al. TOA estimation of chirp signal in dense multipath environment for low-cost acoustic ranging[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(2): 355-367.
|
[17] |
Cao S, Chen X, Zhang X. Effective audio signal arrival time detection algorithm for realization of robust acoustic indoor positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 7341-7352. doi: 10.1109/TIM.2020.2981985
|
[18] |
Chen R, Li Z, Ye F, et al. Precise indoor positioning based on acoustic ranging in smartphone[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12. DOI: 10.1109/TIM.2021.3082269.
|
[19] |
Pfeil R, Pichler M, Schuster S, et al. Robust acoustic positioning for safety applications in underground mining[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(11): 2876-2888. doi: 10.1109/TIM.2015.2433631
|
[20] |
Hammer F, Pichler M, Fenzl H, et al. An acoustic position estimation prototype system for underground mining safety[J]. Applied Acoustics, 2015, 92: 61-74. doi: 10.1016/j.apacoust.2014.12.009
|
[21] |
孙淼. 公司电力隧道运行环境分析及风险管控平台构建研究[D]. 北京: 华北电力大学(北京), 2016.
Sun M. The company's power tunnel operating environment analysis and risk management platform construction research[D]. Beijing: North China Electric Power University (Beijing), 2016.
|
[22] |
Dokmanić I, Parhizkar R, Walther A, et al. Acoustic echoes reveal room shape[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12186-12191. doi: 10.1073/pnas.1221464110
|
[23] |
Georganti E, May T, Van De Par S, et al. Sound source distance estimation in rooms based on statistical properties of binaural signals[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(8): 1727-1741. doi: 10.1109/TASL.2013.2260155
|
[24] |
Schroeder M R. New method of measuring reverberation time[J]. The Journal of the Acoustical Society of America, 1965, 37(6): 1187-1188.
|
[25] |
Lazik P, Rowe A. Indoor pseudo-ranging of mobile devices using ultrasonic chirps[C]//10th ACM Conference on Embedded Network Sensor Systems. New York, USA: ACM, 2012. DOI: 10.1145/2426656.2426667.
|
[26] |
Jensen T L, Nielsen J K, Jensen J R, et al. A fast algorithm for maximum-likelihood estimation of harmonic chirp parameters[J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5137-5152. doi: 10.1109/TSP.2017.2723342
|
[27] |
Deng Z M, Ye L M, Fu M Z, et al. Further investigation on time-domain maximum likelihood estimation of chirp signal parameters[J]. IET Signal Processing, 2013, 7(5): 444-449. doi: 10.1049/iet-spr.2011.0422
|
1. |
罗珊珊,何泽家. 基于粒子滤波泰勒算法的变电站人员定位跟踪系统. 微型电脑应用. 2024(03): 102-107+111 .
![]() | |
2. |
刘巍峰,程瑶,鲍亚川,徐彦田,李玉星. 基于室内三维模型的超宽带基站布网优化算法研究. 测绘科学. 2024(02): 37-46 .
![]() | |
3. |
杨骝,薛灿,徐东阳,王智. 软体机器人空间感知技术综述. 信息与控制. 2022(05): 513-532 .
![]() |