WU Jiarong, WANG Qingyu, WEI Junfeng, WU Weilin. Novel Decoupling Control Scheme for Three-level Buck Converter[J]. INFORMATION AND CONTROL, 2023, 52(3): 352-359. DOI: 10.13976/j.cnki.xk.2023.2163
Citation: WU Jiarong, WANG Qingyu, WEI Junfeng, WU Weilin. Novel Decoupling Control Scheme for Three-level Buck Converter[J]. INFORMATION AND CONTROL, 2023, 52(3): 352-359. DOI: 10.13976/j.cnki.xk.2023.2163

Novel Decoupling Control Scheme for Three-level Buck Converter

More Information
  • Received Date: April 17, 2022
  • Revised Date: October 24, 2022
  • Accepted Date: September 28, 2022
  • Available Online: July 25, 2023
  • In this study, a novel decoupling control scheme is proposed to solve the balance control problem of flying capacitor (FC) voltage and settle the decoupling issue between FC voltage and output voltage in three-level buck converters. We also establish an affine nonlinear mathematical model of the three-level buck converter and study the decoupling conditions of model linearization based on differential geometry theory. In addition, we derive a feedback control law of the decoupling subsystem, design a state feedback controller, and discuss whether the control parameters meet the stability requirements. Our simulation results show that the proposed control scheme has stronger anti-interference performance, faster response speed, and better dynamic regulation characteristics compared with the existing decoupling control method. The experimental results further verify the correctness and superiority of the proposed novel decoupling control scheme.

  • [1]
    LIU J, LIU Z, CHEN W, et al. Current sharing based on incremental passivity and unknown load finite-time estimation for multilevel connected DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2022, 69(1): 713-724. doi: 10.1109/TIE.2021.3053883
    [2]
    陈红兵, 闵晶妍. 三电平Buck变换器的新型控制方法[J]. 昆明理工大学学报(自然科学版), 2019, 44(1): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201901011.htm

    CHEN H B, MIN J Y. A novel control method for tri-level Buck converter[J]. Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(1): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201901011.htm
    [3]
    JIANG W, CHINCHOLKAR S H, CHAN C. Investigation of a voltage-mode controller for a DC-DC multilevel Boost converter[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(7): 908-912. doi: 10.1109/TCSII.2017.2723660
    [4]
    BONANNO G, CORRADINI L. Digital predictive current-mode control of three-level flying capacitor Buck converters[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4697-4710. doi: 10.1109/TPEL.2020.3023612
    [5]
    BROECK G V, MARTINEZ W, DALLA VECCHIA M, et al. Conversion efficiency of the Buck three-level DC-DC converter in unbalanced bipolar dc microgrids[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 9306-9319. doi: 10.1109/TPEL.2020.2969078
    [6]
    LING R, SHU Z, HU Q, et al. Second-order sliding-mode controlled three-level Buck DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 898-906. doi: 10.1109/TIE.2017.2750610
    [7]
    SUN R Y, WU X H, LI W L, et al. Equivalent sliding mode control for multi-level Buck converter[C]//2016 IEEE International Conference on Aircraft Utility Systems. Piscataway, USA: IEEE, 2016: 460-465.
    [8]
    YAO Z, LU S. Voltage self-balance mechanism based on zero-voltage switching for three-level DC-DC converter[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10078-10087. doi: 10.1109/TPEL.2020.2977881
    [9]
    WANG C, LIU X, FEI W, et al. Preliminary design of power supply for water-cooled resistive magnet based on three-level Buck converters[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 1-4.
    [10]
    STILLWELL A, CANDAN E, PILAWA PODGURSKI R. Active voltage balancing in flying capacitor multi-level converters with valley current detection and constant effective duty cycle control[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 11429-11441. doi: 10.1109/TPEL.2019.2899899
    [11]
    张元媛, 阮新波. 多电平直流变换器中FC电压的一种控制策略[J]. 中国电机工程学报, 2004, 24(8): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200408006.htm

    ZHANG Y Y, RUAN X B. A novel control strategy for the flying capacitor voltage of the multilevel converter[J]. Proceedings of the CSEE, 2004, 24(8): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200408006.htm
    [12]
    CHEN H C, LU C Y, LI W H, et al. Active capacitor voltage balancing control for three-level flying capacitor Boost converter based on average-behavior circuit model[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 1628-1638. doi: 10.1109/TIA.2018.2876031
    [13]
    冯颖盈, 阮新波. 多电平Buck变换器的解耦控制与闭环设计[J]. 中国电机工程学报, 2007, 27(10): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200710016.htm

    FENG Y Y, RUAN X B. Decoupling control and closed-loop design of Buck multi-level converter[J]. Proceedings of the CSEE, 2007, 27(10): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200710016.htm
    [14]
    SUN R Y, WU X H, LI W L, et al. Equivalent sliding mode control for multi-level Buck converter[C]//2016 IEEE International Conference on Aircraft Utility Systems. Piscataway, USA: IEEE, 2016: 460-465.
    [15]
    LU C Y, LIN D H, CHEN H C. Decoupled design of voltage regulating and balancing controls for four-level flying capacitor converter[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12152-12161. doi: 10.1109/TIE.2020.3047039
    [16]
    黄勤, 罗成渝, 凌睿. Buck三电平变换器的PWM滑模控制[J]. 计算机工程与应用, 2015, 51(11): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201511055.htm

    HUANG Q, LUO C Y, LING R. PWM based sliding mode control in three-level Buck converter[J]. Computer Engineering and Applications, 2015, 51(11): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201511055.htm
    [17]
    杨朝江, 马家庆, 谢玫秀. PMSM精确反馈线性化的稳速控制[J]. 电力系统及其自动化学报, 2019, 31(10): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZD201910006.htm

    YANG C J, MA J Q, XIE M X. Constant-speed control of PMSM based on precise feedback linearization[J]. Proceedings of the CSU-EPSA, 2019, 31(10): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZD201910006.htm
    [18]
    吴当当, 滕青芳, 佐俊. 基于精确反馈线性化的直流微电网恒功率负载系统NTSMC稳定性研究[J]. 电源学报, 2020, 18(2): 104-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DYXB202002012.htm

    WU D D, TENG Q F, ZUO J. Research on NTSMC stability of dc microgrid constant power load system based on precise feedback linearization[J]. Journal of Power Supply, 2020, 18(2): 104-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DYXB202002012.htm
    [19]
    WU J, LU Y. Decoupling and optimal control of multilevel Buck DC-DC converters with inverse system theory[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7861-7870. http://www.xueshufan.com/publication/2974972644
    [20]
    SHUAI D. Nonlinear decoupling control of three-phase AC/DC voltage-source converters[C]//17th International Conference on Electrical Machines and Systems. Piscataway, USA: IEEE, 2014: 1887-1891.
    [21]
    刘翊馨, 钟志贤, 祁雁英, 等. 基于状态反馈控制的磁悬浮球系统[J]. 桂林理工大学学报, 2019, 39(4): 973-977. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201904026.htm

    LIU Y X, ZHONG Z X, QI Y Y, et al. Magnetic levitation ball system based on state feedback control[J]. Journal of Guilin University of Technology, 2019, 39(4): 973-977. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201904026.htm
  • Cited by

    Periodical cited type(1)

    1. 韩锟,马晓慧,李蔚. 飞跨电容型三电平Buck变换器双闭环控制研究. 铁道科学与工程学报. 2025(02): 829-840 .

    Other cited types(1)

Catalog

    Article views (58) PDF downloads (7) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return