MA Chao, ZHANG Yingtang. Online Kernel Extreme Learning Machine and Its Application to Time Series Prediction[J]. INFORMATION AND CONTROL, 2014, 43(5): 624-629. DOI: 10.13976/j.cnki.xk.2014.0624
Citation: MA Chao, ZHANG Yingtang. Online Kernel Extreme Learning Machine and Its Application to Time Series Prediction[J]. INFORMATION AND CONTROL, 2014, 43(5): 624-629. DOI: 10.13976/j.cnki.xk.2014.0624

Online Kernel Extreme Learning Machine and Its Application to Time Series Prediction

More Information
  • Received Date: August 02, 2013
  • Revised Date: November 10, 2013
  • Published Date: October 19, 2014
  • To monitor the running state of hydraulic equipment online and in real-time by using new, sequentially input samples, we propose an online kernel extreme learning machine (OL-KELM) algorithm. OL-KELM applies Cholesky factorization to extend the kernel extreme learning machine (KELM) from offline mode to online mode. Unlike KELM, OL-KELM can complete the training recursively on the basis of new samples. The learning efficiency is improved by replacing the matrix inverse operation with arithmetic in OL-KELM. Simulations of the online prediction for the chaotic time series show that OL-KELM can achieve the same accuracy as KELM with 40% to 60% less training time. Results of the online and real-time monitoring of a hydraulic pump by OL-KELM show that OL-KELM is robust, with a prediction error 28.3% to 46.2% of SRELM (sequential regularized extreme learning machine). OL-KELM is proved effective for online, real-time monitoring of hydraulic equipment.
  • [1]
    高英杰, 孔祥东, Zhang Q. 基于小波包分析的液压泵状态监测方法[J]. 机械工程学报, 2009, 45(8): 80-88. Gao Y J, Kong X D, Zhang Q. Wavelet packets analysis based method for hydraulic pump condition monitoring[J]. Journal of Mechanical Engineering, 2009, 45(8): 80-88.
    [2]
    周之胜. 基于阻抗分析的液压泵状态监测方法研究[D]. 吉林: 吉林大学, 2009. Zhou Z S. Study on condition monitoring of hydraulic pump on the basis of resistance analysis[D]. Jilin: Jilin University, 2009.
    [3]
    郭阳明, 蔡小斌, 付琳娟, 等. 基于回声状态网络的飞机混沌时间序列预测模型[J]. 西北工业大学学报, 2012, 30(4): 607-611. Guo Y M, Cai X B, Fu L J, et al. An effective prediction model for aircraft chaos time series based on echo state networks[J]. Journal of Northeastern Polytechnical University, 2012, 30(4): 607-611.
    [4]
    郭建华, 杨海东. 基于支持向量免疫集成预测的电信网络性能监控[J]. 中南大学学报: 自然科学版, 2012, 43(3): 1020-1026. Guo J H, Yang H D. Telecom networks performance monitoring based on artifical immune support vector regression[J]. Journal of Central South University: Science and Technology, 2012, 43(3): 1020-1026.
    [5]
    Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
    [6]
    Xia M, Zhang Y C, Weng L G, et al. Fashion retailing forcasting based on extreme learning machine with adaptive metrics of inputs[J]. Knowledge-Based Systems, 2012, 36(1): 253-259.
    [7]
    程松, 闫建伟, 赵登福, 等. 短期负荷预测的集成改进极端学习机方法[J]. 西安交通大学学报, 2009, 43(2): 106-110. Cheng S, Yan J W, Zhao D F, et al. Short-term load forecasting method based on ensemble improved extreme learning machine[J]. Journal of Xi'an Jiaotong University, 2009, 43(2): 106-110.
    [8]
    高光勇, 蒋国平. 采用优化极限学习机的多变量混沌时间序列预测[J]. 物理学报, 2012, 61(4): 1-9. Gao G Y, Jiang G P. Prediction of multivariable chaotic time series using optimized extreme learning machine[J]. Acta Physica Sinica, 2012, 61(4): 1-9.
    [9]
    张弦, 王宏力. 基于贯序正则极端学习机的时间序列预测及应用[J]. 航空学报, 2011, 32(7): 1302-1308. Zhang X, Wang H L. Time series prediction based on sequential regularized extreme learning machine and its application[J]. Acta Aeromautica et Astronautica Sinica, 2011, 32(7): 1302-1308.
    [10]
    Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(2): 513-529.
    [11]
    Zong W W, Zhou H M, Huang G B, et al. Face recognition based on kernelized extreme learning machine[C]//the Second International Conference on Autonomous and Intelligent Systems. 2011: 263-272.
    [12]
    张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2005: 225-227. Zhang X D. Matrix analysis and applications[M]. Beijing: Tsinghua University Press, 2005: 225-227.
    [13]
    徐勇, 张大鹏, 杨健. 模式识别中的核方法及其应用[M]. 北京: 国防工业出版社, 2010: 23-43. Xu Y, Zhang D P, Yang J. Kernel method and its application in pattern recognition[M]. Beijing: Defense Industry Press, 2010: 23-43.
    [14]
    Dong M G, Wang N. Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness[J]. Applied Mathematical Modeling, 2011, 35(3): 1024-1035.

Catalog

    Article views (1787) PDF downloads (409) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return