SHEN Qianyan, DING Feng. Least Squares Parameter Estimation for Input Nonlinear Controlled Autoregressive Systems Based on the Key Variable Separation[J]. INFORMATION AND CONTROL, 2014, 43(2): 253-256. DOI: 10.3724/SP.J.1219.2014.00253
Citation: SHEN Qianyan, DING Feng. Least Squares Parameter Estimation for Input Nonlinear Controlled Autoregressive Systems Based on the Key Variable Separation[J]. INFORMATION AND CONTROL, 2014, 43(2): 253-256. DOI: 10.3724/SP.J.1219.2014.00253

Least Squares Parameter Estimation for Input Nonlinear Controlled Autoregressive Systems Based on the Key Variable Separation

  • There exists the product of two unknown parameter sets in input nonlinear systems. Thus, the model parameters are unidentifiable. By normalizing the system parameters and using key variable separation, a least squares-based iterative algorithm is proposed to identify input nonlinear controlled autoregressive systems. The proposed algorithm is verified by simulation examples.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return