WANG Yan-wu, GUAN Zhi-hong, H. O. WANG. A STUDY ON SYNCHRONIZATION PROBLEM OF CHAOTIC SYSTEMS VIA UNIVARIABLE COUPLING[J]. INFORMATION AND CONTROL, 2003, 32(2): 185-188.
Citation: WANG Yan-wu, GUAN Zhi-hong, H. O. WANG. A STUDY ON SYNCHRONIZATION PROBLEM OF CHAOTIC SYSTEMS VIA UNIVARIABLE COUPLING[J]. INFORMATION AND CONTROL, 2003, 32(2): 185-188.

A STUDY ON SYNCHRONIZATION PROBLEM OF CHAOTIC SYSTEMS VIA UNIVARIABLE COUPLING

More Information
  • Received Date: April 04, 2002
  • Published Date: April 19, 2003
  • The chaotic synchronization problem is studied. Control rules based on single variable of driven system are presented for chaotic Lorenz system and Chen's system. The control scheme doesn't need additional energy. It just relies on the self-coupling of single state variable of the chaotic systems. Numerical experimental results are presented.
  • [1]
    王东生,曹磊. 混沌、分形及其应用[M]. 合肥:中国科学技术大学出版社, 1995
    [2]
    Pecora L M, Caroll T L. Synchroni-zation in chaotic system[J]. Physical R eview Letters, 1990,64:821~824
    [3]
    Rosenblum M G, Pikovsky A S, Kurths J. Phase synchronization of chaotic osci llators[J]. Physical Review Letters.1996,76(11):1804~1807
    [4]
    Rosenblum M G, Pikovsky A S, Kurths J. From phase to lag synchronization in coupled chaotic oscillators[J]. Physical Review Letters. 1997,78(2 2):4193~4196
    [5]
    González-Miranda J M. Bistable generalized synchronization of chaotic s ystems[J]. Computer Physics Communications,1999,(121~122):429~431
    [6]
    戴旭初,张锦钢,徐佩霞.一种基于耦合反馈的离散组合混沌系统的同步方法[J].控制理论与应用,2000,17(5):789~792
    [7]
    王胜远,刘玉怀,路轶群等. Lorenz和Rossler混沌系统的两驱动一响应同步研究[J] .量子电子学报,1998,15(5):460~464
    [8]
    朱洪波,肖井华,李向明. 单向耦合非线性系统的时空混沌同步[J]. 北京邮电大学学报, 1998,21(4):30~33
    [9]
    陈光旨,李伟. 相互耦合作用下混沌系统的同步[J]. 广西科学,1998,5(3):177~180
    [10]
    Chen G, Uet T. Yet Another chaotic attractor[J]. International Journal of Bifurcation and Chaos,1999,9(7):1465~1466
  • Related Articles

    [1]SUN Kehui, HE Shaobo, DONG Yanqing. Tracking Synchronization Control of the Simplified Lorenz Chaotic System[J]. INFORMATION AND CONTROL, 2015, 44(4): 393-397. DOI: 10.13976/j.cnki.xk.2015.0393
    [2]FANG Jie, HU Zhihong, JIANG Yong. Adaptive Modified Function Projective Synchronization of Coupled Chaotic System[J]. INFORMATION AND CONTROL, 2013, 42(1): 39-45. DOI: 10.3724/SP.J.1219.2013.00039
    [3]LI Zhanguo, XU Wei. Reduced-order Hybrid Function Projective Synchronization between Different-order Chaotic Systems[J]. INFORMATION AND CONTROL, 2012, 41(1): 33-37.
    [4]Reduced-order Hybrid Function Projective Synchronization between Different-order Chaotic Systems[J]. INFORMATION AND CONTROL, 2012, 41(1).
    [5]SUN Kehui, QIU Shuisheng, YIN Linzi. Adaptive Function Projective Synchronization and Parameter Identification for Chaotic Systems[J]. INFORMATION AND CONTROL, 2010, 39(3): 326-331,341.
    [6]XU Birong. Chaotic Synchronization of Network of Chua's Chaotic System and Its Applications to Secure Communication[J]. INFORMATION AND CONTROL, 2010, 39(1): 54-58,65.
    [7]SHAN Liang, LIU Zhong, LI Jun, WANG Zhi-quan. Feedback Synchronization for a New Piecewise Chaotic System[J]. INFORMATION AND CONTROL, 2009, 38(5): 637-640.
    [8]ZHANG Qing-ling, LÜ Ling. Parameter Identification and Synchronization with Diverse Structures of Uncertain Lorenz Systems[J]. INFORMATION AND CONTROL, 2008, 37(2): 146-149.
    [9]ZHANG Qing-ling, LÜ Ling. Synchronization Control of Chaos Based on Linear Invertible Transform[J]. INFORMATION AND CONTROL, 2008, 37(1): 68-72.
    [10]SHAN Liang, LI Jun, WANG Zhi-quan. Generalized Synchronization Based on Unified Chaotic System[J]. INFORMATION AND CONTROL, 2004, 33(6): 689-693.

Catalog

    Article views (1373) PDF downloads (95) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return