LI Dazi, QIAN Li, JIN Qibing, TAN Tianwei. Modified Global K'-means Algorithm and Its Application to Data Clustering[J]. INFORMATION AND CONTROL, 2011, 40(1): 100-104.
Citation: LI Dazi, QIAN Li, JIN Qibing, TAN Tianwei. Modified Global K'-means Algorithm and Its Application to Data Clustering[J]. INFORMATION AND CONTROL, 2011, 40(1): 100-104.

Modified Global K'-means Algorithm and Its Application to Data Clustering

More Information
  • Received Date: December 24, 2009
  • Revised Date: May 25, 2010
  • Published Date: February 19, 2011
  • In order to solve the problems of the initialization of clustering centers,determination of the number of clustering centers,and avoidance of dead-unit and so on,a modified global E-means algorithm(MGK'M) is proposed.The improved algorithm can be used not only to calculate its starting point by the auxiliary cluster function,but also to find the actual number of clusters by using the cost-function without preset the number of clusters.At the same time,it can avoid the dead-unit problem.The improved algorithm is used for clustering of actual data sets.Experiment results demonstrate that the proposed algorithm can get better clustering results compared with the modified global K-means algorithm and K-means algorithm.
  • [1]
    Zalik K R.An efficient k-means clustering algorithm[J].Pattern Recognition Letters,2008,29(9):1385-1391
    [2]
    张琪,胡昌华,乔玉坤.基于聚类粒子滤波器的故障预报方法研究[J].信息与控制,2009,38(1):115-120.Zhang Q,Hu C H,Qiao Y K.A fault prediction method based on clustering particle filter[J].Information and Control,2009,38(1):115-120
    [3]
    杜红斌,夏克文,刘南平,等.一种改进的基于广义后缀树的文本聚类算法[J].信息与控制,2009,38(3):331-336.Du H B,Xia K W,Liu N P,et al.An improved text clustering algorithm of generalized suffix tree[J].Information and Control,2009,38(3):331-336
    [4]
    Aswani K C,Srinivas S.Concept lattice reduction using fuzzy K-means clustering[J].Expert Systems with Applications,2010,37(3):2696-2704
    [5]
    Bagirov A,Mardaneh K.Modified global k-means algorithm for clustering in gene expression data sets[C]//Proceedings of the 2006 Workshop on Intelligent Systems for Bioinformatics.New York,NJ.USA:ACM,2006:23-28
    [6]
    Likas A,Vlassis N,Jr Verbeek J.The global k-means clustering algorithm[J].Pattern Recognition,2003,36(2):451-461
    [7]
    Wallace C S,Dowe D L.Minimum message length and Kolmogorov complexity[J].Computer Journal,1999,42(4):270-283
    [8]
    Redmond S,Heneghan C.A method for initialising the k-means clustering algorithm using kd-trees[J].Pattern Recognition Letters,2007,28(8):965-973
    [9]
    王守强,朱大铭,韩爱丽.基于初始点选取的k-means聚类近似常数算法[J].计算机研究与发展,2007,44(z2):69-74.Wang S Q,Zhu D M,Han A L.Aconstant approximate algorithm for k-means problem based on initial DoiIlt selecting[J].Journal of Computer Research and Development,2007,44(z2):69-74
    [10]
    Xu L,Krzyzak A,Oja E.Rival penalized competitive learning for clustering analysis,RBF net,and culwe detection[J].IEEE Transactions on Neural Networks,1993,4(4):636-649
    [11]
    Bagirov A M.Modified global k-means algorithm for minimum sum-of-squares clustering problems[J].Pattern gecognition,2008,41(10):3192-3199
    [12]
    Lai J Z C,Huang T J.Fast global k-means clustering using cluster membership and inequality[J].Pattern Recognition,2010,43(5):1954-1963
    [13]
    Murphy P,Aha D.UCI repository of machine learning databases[D].Los Angeles,CA,USA:University of California,1994
    [14]
    Fisher R A.The use of multiple measurements in taxonomic problems[J].Annals of Eugenics,1936(7):179-188.

Catalog

    Article views (2033) PDF downloads (218) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return