Citation: | SUN Debao, GAO Chao. A USEFUL BP ALGORITHM TO OVERCOME LOCAL MINIMA[J]. INFORMATION AND CONTROL, 1995, 24(5): 283-287. |
[1] |
Rumelhart D E. McClelland J L. Parallel Distributed Processing. MIT Press. 1986:1.2.
|
[2] |
Minsky M Papert S. Perceptrons. MIT Press, 1969.
|
[3] |
Gori M.Tesi A.Some Examples of Local Minima During Learning with BP.Proc Parallel Archrtecture Veural Net-works,1990.
|
[4] |
Werbs D J.Back-Propagation: Past and Future. 1988 IEEE International Conference on Veural Networks, 1988. 1.
|
[5] |
Hush D R.Salas J M. Improving the Learning Rate of BP with the Gradient Reuse Algorithm. 1988 IEEE International Conference on Veural Vetworks.1988. 1.
|
[6] |
Wessels L F A.Barnarcd E. Avoiding False Local Minima by Proper Initialirstion of Connections. IEEE Veural Networks.1992.3(6).
|
[7] |
Yu X H. Can Back-Propagation Error Surface Vot Have Local Minima. IEEE Veural Vetworks.1992.3(6).
|
[8] |
Baldi O. Neural Networks and Principal Component Analysis:Learning from Exmaples and Local Minima. Veural Vetworks,1989.2:53-58.
|
[9] |
Gori U. Tesi A. Un the Problem of Local Minima in BP. IEEE Trans Pattern Anal Mach Intell,JAI. l992.
|