Citation: | LI Wenhong, TIAN Wenjuan, WANG Xia, LUO Kexue. Serial Number Identification of RMB Banknote Based on Support Vector Machine[J]. INFORMATION AND CONTROL, 2010, 39(4): 462-465,471. |
[1] |
徐海兰,刘彦婷,杨磊.模式识别中三种字符识别的方法[J].北京广播学院学报:自然科学版,2005,12(4):34-38.Xu Hailan,Liu Yanting,Yang Lei.Three recognition methods of license plate's characters[J].Journal of Beijing Broadcasting Institute:Science and Technology,2005,12(4):34-38.
|
[2] |
Vapnik V N.The nature of statistical learning theory[M].Berlin,Germany:Springer,1995.
|
[3] | |
[4] |
刘红刚.纸币号码识别系统的设计与实现[D].长沙:中南大学,2007.
|
[5] |
Liu Honggang.The design and implementation on recognizing system of paper currency numbers[D].Changsha:Central South University,2007.
|
[6] |
张国云.支持向量机算法及应用研究[D].长沙:湖南大学,2006.Zhang Guoyun.Algorithm and application research of support vector machine[D].Changsha:Hunan University,2006.
|
[7] |
肖明明,黎耀荣.基于DSP的字符识别系统的实现[J].微计算机信息,2009(1/2):133-134.Xiao Mingming,Li Yaorong.Design of identification system based DSP for character list[J].Microcomputer Information,2009(1/2):133-134.
|
[8] |
周亮.基于神经网络的车牌识别算法研究[D].青岛:青岛科技大学,2007.Zhou Liang.License plate recognition algorithm based on neural network[D].Qingdao:Qingdao University of Science& Technology,2007.
|
[1] | SHI Cui-cui, LIU Yuan-hua, CHEN Xin. Water Quality Prediction Model Based on Particle Swarm Optimization Support Vector Regression[J]. INFORMATION AND CONTROL, 2022, 51(3): 307-317. DOI: 10.13976/j.cnki.xk.2022.1125 |
[2] | YANG Haitao, XIAO Jun, WANG Peiyao. Vector Pre-selected Piecewise Regression Algorithm for Support Vector Machines[J]. INFORMATION AND CONTROL, 2016, 45(4): 444-448,455. DOI: 10.13976/j.cnki.xk.2016.0444 |
[3] | SHANG Wenli, LI Lin, WAN Ming, ZENG Peng. Intrusion Detection Algorithm Based on Optimized One-class Support Vector Machine for Industrial Control System[J]. INFORMATION AND CONTROL, 2015, 44(6): 678-684. DOI: 10.13976/j.cnki.xk.2015.0678 |
[4] | ZHAO Chao, DAI Kuncheng. Power System Short-term Load Forecasting Based on Adaptive Weighted Least Squares Support Vector Machine[J]. INFORMATION AND CONTROL, 2015, 44(5): 634-640. DOI: 10.13976/j.cnki.xk.2015.0634 |
[5] | TAO Xinmin, CAO P, ong, SONG Shaoyu. The Semi-Supervised SVM Classification Algorithm Based on Two-Stage Learning[J]. INFORMATION AND CONTROL, 2012, 41(1): 7-13. |
[6] | LIANG Ximing, YAN Gang, LI Shanchun, LONG Wen, LONG Zuqiang. Nonlinear Predictive Control Based on Least Squares Support Vector Machines and Chaos Optimization[J]. INFORMATION AND CONTROL, 2010, 39(2): 129-135. |
[7] | CAI Yong, XIAO Jian, JIANG Gang. Optimized Sub-sample Curve Expression Based on SVM[J]. INFORMATION AND CONTROL, 2008, 37(1): 108-112. |
[8] | YUAN Xiao-fang, WANG Yao-nan, SUN Wei. Fuzzy Support Vector Network Control Based on Genetic Algorithms[J]. INFORMATION AND CONTROL, 2005, 34(2): 205-208. |
[9] | AN Jin-long, WANG Zheng-ou, MA Zhen-ping. A New SVM Multiclass Classification Method[J]. INFORMATION AND CONTROL, 2004, 33(3): 262-267. |
[10] | LIU Jiang-hua, CHENG Jun-shi, CHEN Jia-pin. Support Vector Machine Training Algorithm: A Review[J]. INFORMATION AND CONTROL, 2002, 31(1): 45-50. |