MA Fei, CAO Zeyang, LIU Hui. Firing Application Strategies of Ground-to-Air Missile Composite Group Based on Stackelberg Decision Model[J]. INFORMATION AND CONTROL, 2010, 39(6): 755-760.
Citation: MA Fei, CAO Zeyang, LIU Hui. Firing Application Strategies of Ground-to-Air Missile Composite Group Based on Stackelberg Decision Model[J]. INFORMATION AND CONTROL, 2010, 39(6): 755-760.

Firing Application Strategies of Ground-to-Air Missile Composite Group Based on Stackelberg Decision Model

More Information
  • Received Date: November 04, 2009
  • Revised Date: March 30, 2010
  • Published Date: December 19, 2010
  • The definition of GAM(ground-to-air missile) composite group firing application is given firstly.The Stackelberg relation of composite group firing application is analyzed,and based on it,the Stackelberg decision model of composite group firing application is established.In view of the characteristics of Stackelberg decision model,the improved PSO(particle swarm optimization) algorithm is proposed,named as immune PSO.Furthermore,in consideration of the characteristics of GAM composite group,the objective function equation of principal decision and sub-decision are deduced.Finally,according to the simulation analysis,the anti-air dynamic result of GAM composite group is obtained and the tactical explanations are given.
  • [1]
    王志华.地空导弹战术群火力运用研究[D].三原:空军工程大学,2009.Wang Z H.Research on firing employment of GAM tactics composite group[D].Sanyuan:Air Force Engineering University,2009.
    [2]
    陈杰生.地空导弹兵战术混编群作战指挥研究[D].三原:空军工程大学,2008.Chen J S.Research on the operational command of GAM tactical composite group[D].Sanyuan:Air Force Engineering University,2008.
    [3]
    刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003.Liu B D,Zhao R Q,Wang G.Uncertainty programming with applications[M].Beijing:Tsinghua University Press,2003.
    [4]
    盛昭翰.主从递阶决策论——Stackelberg 问题[M].北京:科学出版社,1998.Sheng Z H.Leader-follower hierarchical decision theory-Stackelberg problems[M].Beijing:Science Press,1998.
    [5]
    赵志刚,顾新一,李陶深.求解双层规划模型的粒子群优化算法[J].系统工程理论与实践,2007,27(8):92-98.Zhao Z G,Gu X Y,Li T S.Particle swarm optimization for bilevel programming problem[J].Systems Engineering-Theory &Practice,2007,27(8):92-98.
    [6]
    王海政,仝允桓.主从递阶多目标风险决策模型构建及算法研究[J].运筹与管理,2007,16(1):1-8.Wang H Z,Tong Y H.Algorithm study on models of multiple objective risk decision under principal and subordinate hierarch decision-making[J].Operations Research and Management Science,2007,16(1):1-8.
    [7]
    张莉,张菁,张安.基于两层对策系统的编队协同对地攻防对抗决策分析研究[J].数学的实践与认识,2009,39(1):1-7.Zhang L,Zhang Q,Zhang A.Study on group air to ground attack-defends campaign based on bilevel-game strategy[J].Mathematics in Practice and Theory,2009,39(1):1-7.
    [8]
    刘明广.复杂群决策系统协同优化方法[D].天津:天津大学,2006.Liu M G.Research on the method of collaborative optimization about the complex group decision-making system[D].Tianjin:Tianjing University,2006.
    [9]
    张雷,孙金萍,刘向民.基于主从递阶决策的战术级防空武器目标分配模型[J].系统工程与电子技术,2005,27(4):676-677.Zhang L,Sun J P,Liu X M.Target assignment model based on Stackelberg decision for tactics weapon system of the air defense[J].Systems Engineering and Electronics,2005,27(4):676-677.
    [10]
    Galati D G.Game Theoretic target assignment strategies in competitive multi-team systems[D].Pennsylvania,USA:University of Pittsburgh,2004.
    [11]
    马飞,曹泽阳.基于博弈理论的动态目标分配策略研究[C]//2009年全国博士生学术论坛(军事学)论文集.南京:陆军指挥学院,2009:245-249.Ma E Cao Z Y.Research on the strategy of dynamic target assignment based on game theory[C]//Proceeding of 09' Doctoral Forum of China:Strategies.Nanjing:Army Command College,2009:245-249.

Catalog

    Article views (2419) PDF downloads (220) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return