LI Ling-lai, ZHOU Dong-hua. Robust Fault Diagnosis of Nonlinear System Based on Analytical Models:a Survey[J]. INFORMATION AND CONTROL, 2004, 33(4): 451-456,462.
Citation: LI Ling-lai, ZHOU Dong-hua. Robust Fault Diagnosis of Nonlinear System Based on Analytical Models:a Survey[J]. INFORMATION AND CONTROL, 2004, 33(4): 451-456,462.

Robust Fault Diagnosis of Nonlinear System Based on Analytical Models:a Survey

More Information
  • Received Date: September 15, 2003
  • Published Date: August 19, 2004
  • Studies on robust fault diagnosis of nonlinear systems based on analytical models are of great significance. This paper mainly concerns two kinds of approaches:nonlinear unknown input observer scheme and the method based on adaptive learning, and summarizes some other approaches. In addition, we also discuss some applications of robust fault diagnosis of nonlinear systems, and point out some key issues and the future research direction.
  • [1]
    Frank P M, Ding S X, Koppen-Seliger B. Current developments in the theory of FDI [A]. 4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes(SAFEPROCESS'2000) [C]. Budapest, Hungary:2000. 16~27.
    [2]
    Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fault detection and diagnosis Part Ⅰ:quantitative modelbased methods [J]. Computer & Chemical Engineering, 2003,27(3):293~311.
    [3]
    Frank P M, Ding X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems [J].Journal of Process Control, 1997, 7(6):403~424.
    [4]
    Chen J, Patton R J. Robust Model-based Fault Diagnosis for Dynamic Systems [M]. Dordrecht:Kluwer Academic Press, 2000.
    [5]
    周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [6]
    Frank P M. On-line fault detection in uncertain nonlinear systems using diagnostic observers:a survey [J]. International Journal of Systems Science, 1994, 25(12):2129~2154.
    [7]
    Garcia E A, Frank P M. Deterministic nonlinear observer-based approaches to fault diagnosis:a survey [J]. Control Engineering Practice, 1997, 5(5):663~670.
    [8]
    Watanabe K, Himmelblau D M. Instrument fault detection in systems with uncertainties [J]. International Journal of Systems Science, 1982, 13(2):137~158.
    [9]
    Chen J, Patton R J, Zhang H Y. Design of unknown input observers and robust fault detection filters [J]. International Journal of Control, 1996, 63(1):85~105.
    [10]
    Watanabe K, Himmelblau D M. Incipient fault diagnosis of nonlinear processed with multiple causes of faults [J]. Chemical Engineering Science, 1984, 39(3):491~508.
    [11]
    Yu D L, Shields D N. A bilinear fault detection observer [J].Automatica, 1996, 32(11):1597~1602.
    [12]
    Yu D L, Shields D N. A bilinear fault detection filter [J]. International Journal of Control, 1997, 68(3):417~430.
    [13]
    Kinnaert M. Robust fault detection based on observers for bilinear systems [J]. Automatica, 1999, 35(11):1829~1842.
    [14]
    Kinnaert M, El Bahir L. Innovation generation for bilinear systems with unknown inputs [A]. Nijmeijer H, Fossen T 1. New Directions in Nonlinear Observer Design, Lecture Notes in Control and Information Science 244 [C]. London:1999. 445~465.
    [15]
    Zasadzinski M, Magnrotto E, Rafaralahy H, et al. Residual generator design for singular bilinear systems subjected to unmeasurable disturbances:an LMI approach [J]. Automatica, 2003, 39(4):703~713.
    [16]
    Shields D N, Daley S. A quantitative fault detection method for a class of nonlinear systems [J]. Transactions of the Institute of Measurement and Control, 1998, 20(3):125~133.
    [17]
    Shields D N, Du S. Fault detection observers for continuous nonlinear polynomial systems of general degree [J]. International Journal of Control, 2003, 76(5):437~452.
    [18]
    Wuennenberg J. Observer-based fault detection in dynamic systems [D]. Duisburg, Germany:University of Duisburg, 1990.
    [19]
    Seliger R, Frank P M. Fault-diagnosis by disturbance decoupled nonlinear observers [A]. Proceedings of the 30th IEEE Conference on Decision and Control [C]. Brighton, England:1991.2248~2253.
    [20]
    Vemuri A T, Polycarpou M M. Robust nonlinear fault diagnosis in input-output systems [J]. International Journal of Control,1997, 68(2):343~360.
    [21]
    Trunov A B, Polycarpou M M. Automated fault diagnosis in nonlinear multivariable systems using a learning methodology [J].IEEE Transactions on Neural Networks, 2000, 11(1):91~101.
    [22]
    Zhang X D, Polycarpou M M, Parisini T. Robust fault isolation for a class of non-linear input-output systems [J]. International Journal of Control, 2001,74(13):1295~1310.
    [23]
    Demetriou M A, Polycarpou M M. Incipient fault diagnosis of dynamical systems using online approximators [J]. IEEE Transactions on Automatic Control, 1998, 43(11):1612~1617.
    [24]
    Polycarpou M M, Trunov A B. Learning approach to nonlinear fault diagnosis:detectability analysis [J]. IEEE Transactions on Automatic Control, 2000, 45(4):806~812.
    [25]
    Zhang X D, Polycarpou M M, Parisini T. A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems [J]. IEEE Transactions on Automatic Control, 2002, 47(4):576~592.
    [26]
    Chen W, Saif M. Robust fault detection and isolation in constrained nonlinear systems via a second order sliding mode observer [A]. Preprints of IFAC 15th Triennial World Congress [C].Barcelona, Spain:2002. 1498~1500.
    [27]
    Chen W, Saif M. An iterative learning observer-based approach to fault detection and accommodation in nonlinear system [A].Proceedings of the 40th IEEE Conference on Decision and Control[C]. Orlando, Florida, USA:2001. 4469~4474.
    [28]
    Besancon G. High-gain observation with disturbance attenuation and application to robust fault detection [J]. Automatica, 2003,39(6):1095~1102.
    [29]
    Jiang B, Wang J L. Actuator fault diagnosis for a class of bilinear systems with uncertainty [J]. Journal of Franklin Institute,2002, 339(3):361~374.
    [30]
    Jiang B, Cocquempot V, Christophe C. Fault diagnosis using sliding mode observer for nonlinear systems [A]. Preprints of IFAC 15th Triennial World Congress [C]. Barcelona, Spain:2002. 674~679
    [31]
    Yu D L, Shields D N. Extension of the parity-space method to fault diagnosis of bilinear systems [J]. International Journal of Systems Science, 2001,32(8):953~962.
    [32]
    Gertler J, Staroswieeki M. Structured fault diagnosis in mildly nonlinear systems:parity space and input-output formulations[A] , Preprints of IFAC 16th Triennial World Congress [C].Washington, USA:2003. 439~444.
    [33]
    Staroswiecki M, Cometet-Varga G. Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems[J]. Automatica, 2001, 37(5):687~699.
    [34]
    Krishnaswami V, Luh G C, Rizzoni G. Fault detection in IC engines using nonlinear parity equations [A] , Proceedings of the 1994 American Control Conference [C]. Baltimore, Maryland:1994. 2001~2005.
    [35]
    Zolghadri A, Henry D, Monsion M. Design of nonlinear observers for fault diagnosis:a case study [J]. Control Engineering Practice, 1996, 4(11):1535~1544.
    [36]
    Linker R, Cutman P O, Scginer I. Observer-based robust failure detection and isolation in greenhouses [J]. Control Engineering Practice, 2002, 10(5):519~531.
    [37]
    Yu D L. Diagnosing simulated faults for an industrial furnace based on bilinear model [J]. IEEE Transactions on Control Systems Technology, 2000, 8(3):435~432.
    [38]
    Zhong M Y, Ding S X, JiaL, etal. An optimization approach to fault detection for bilinear systems [A]. 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Process(SAFEPROCESS'2003) [C]. Washington, USA:2003. 669~674.
  • Related Articles

    [1]DONG Xin, OUYANG Gaoxiang, HAN Weihua, YANG Xin. Strong Tracking CKF and Its Application to Fault Diagnosis of Nonlinear Systems[J]. INFORMATION AND CONTROL, 2014, 43(4): 451-456. DOI: 10.13976/j.cnki.xk.2014.0451
    [2]HU Xueshu, LIU Yusheng. Design of Robust Adaptive Observer for Nonlinear Large-Scale Systems[J]. INFORMATION AND CONTROL, 2010, 39(6): 707-713.
    [3]LIU Chun-sheng, HU Shou-song. Robust Adaptive H Tracking Control Based on State Observer for a Class of Non-affine Nonlinear Systems[J]. INFORMATION AND CONTROL, 2006, 35(6): 726-731.
    [4]ZHU Liang, JIANG Chang-sheng, FANG Wei. Design of a Robust Trajectory Linearization Controller for Uncertain Nonlinear Systems Based on Nonlinear Disturbance Observer[J]. INFORMATION AND CONTROL, 2006, 35(6): 705-710.
    [5]MA Li-ling, JIANG Yun-bo, WANG Fu-li. FAULT DETECTION AND DIAGNOSIS METHOD BASED ON SLIDING MODE-NEURAL NETWORK OBSERVER[J]. INFORMATION AND CONTROL, 2003, 32(3): 234-238.
    [6]ZHOU Chuan, HU Wei-li, CHEN Qing-wei, WU Xiao-bei, HU Shou-song. AN APPROACH TO NONLINEAR ROBUST FAULT DIAGNOSIS BASED ON NEURAL NETWORK ON-LINE APPROXIMATOR[J]. INFORMATION AND CONTROL, 2003, 32(1): 1-4.
    [7]ZHOU Chuan, WU Xiao-pei, CHEN Qing-wei, HU Wei-li, ZHOU Yu. ROBUST FAULT DETECTION BASED ON A CLASS OF NONLINEAR STATE OBSERVER[J]. INFORMATION AND CONTROL, 2000, 29(4): 297-303.
    [8]HU Shousong, ZHOU Chuan, HU Weili. ROBUST FAULT DETECTION FOR A CLASS OF NONLINEAR SYSTEM BASED ON NEURAL NETWORKS OBSERVER[J]. INFORMATION AND CONTROL, 1999, 28(3): 214-218,240.
    [9]ZHU Ruijun, CHAI Tianyou, FU Jingdan, HU Weili. ROBUST OBSERVER DESIGN FOR A CLASS OF UNCERTAIN NONLINEAR SYSTEMS USING RECURRENT DYNAMIC NEURAL NETWORKS[J]. INFORMATION AND CONTROL, 1998, 27(6): 423-426.
    [10]CHEN Jinshui, SUN Youxian. A ROBUST FAULT DIAGNOSIS METHODOLOGY FOR SENSOR GAIN DRIFTING IN DYNAMIC SYSTEMS[J]. INFORMATION AND CONTROL, 1995, 24(6): 321-325.

Catalog

    Article views (832) PDF downloads (119) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return