LIU Tao, XIE Yongchun. Adaptive Deterministic Sampling Filter Algorithm[J]. INFORMATION AND CONTROL, 2010, 39(6): 673-680.
Citation: LIU Tao, XIE Yongchun. Adaptive Deterministic Sampling Filter Algorithm[J]. INFORMATION AND CONTROL, 2010, 39(6): 673-680.

Adaptive Deterministic Sampling Filter Algorithm

More Information
  • Received Date: November 03, 2009
  • Revised Date: April 12, 2010
  • Published Date: December 19, 2010
  • The deterministic sampling filtering is improved,and a kind of adaptive deterministic sampling filter is proposed. Firstly,for the estimation of noise's statistical parameters,a recursive estimation algorithm for stationary noise and three other ones for non-stationary noise are given;then through combining these estimation algorithms with deterministic sampling filtering,several new adaptive sampling filtering algorithms can be derived.The simulation results are shown that,when statistical parameters of non-stationary noise are unknown,more accurate estimation result can be obtained by adaptive deterministic sampling filtering algorithms.
  • [1]
    Simon D.Optimal state estimation:Kalman,H,and nonlinear approaches[M].Hoboken,NJ,USA:John Wiley & Sons Inc.,2006.
    [2]
    Julier S J,Uklmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.  
    [3]
    Noraard M,Poulsen N K,Ravn O.New developments in state estimation for nonlinear systems[J].Automatica,2000,36(11):1627-1638.  
    [4]
    Arasaratuam I,Haykin S,Eiliott R J.Discrete time nonlinear filtering algorithms using Gauss-Hermite quadrature[J].Proceedings of the IEEE,2007,95(5):953-977.  
    [5]
    Ristic B00,Arulampalam S,Gordon N.Beyond the Kalman fitler:Particle filters for tracking applications[M].London,UK:Artech House,2004.
    [6]
    Mehra R K.Approaches to adaptive filtering[J].IEEE Transactions on Automatic Control,1972,17(5):693-698.  
    [7]
    Sage A P,Husa G W.Adaptive filtering with unknown priori statistics[C]//10th Joint Automatic Control Conference.1969.
    [8]
    邓自立.自校正滤波理论及其应用:现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2003.Deng Z L.Self-tuning filtering theory and applications-Modern time series method[M].Harbin:Harbin Institute of Technology Press,2003.
    [9]
    Maybeck P.Stochastic models,estimation,and control:vol.2[M].New York,NY,USA:Academic Press,1979.
    [10]
    Busse F D,How J P,Simpson J,et al.Demonstration of adaptive extended Kalman filter for low earth orbit formation estimation using CDGPS[J].Journal of the Institute of Navigation,2003,50(2):79-93.
    [11]
    Myers K A,Tapley B T.Adaptive sequential estimation with unknown noise statistics[J].IEEE Transactions on Automatic Control,1976,21(4):520-523.  
    [12]
    Leathrum J E On sequential estimation of state noise variances[J].IEEE Transactions on Automatic Control,1981,26(3):745-746.
    [13]
    范炜,李勇.一种基于AUKF的航天器自主导航算法[J].空间控制技术与应用,2009,35(3):23-28.Fan W,Li Y.An adaptive unscented Kalman filter based spacecraft autonomous navigation algorithm[J].Aerospace Control and Application,2009,35(3):23-28.
    [14]
    Jin L D.Nonlinear Bayesian filtering with applications to estimation and navigation[D].Colledge station,TX,USA:Texas A&M University,2005.
    [15]
    van der Merwe R.Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D].Portland,Oregon,USA:Oregon Health & Science University,2004.
  • Related Articles

    [1]LI Feng, LIANG Mingjun, LUO Yinsheng, HE Naibao, GU Ya, CAO Qingfeng. Two-stage Identification of Hammerstein Nonlinear System Corrupted by Colored Noise[J]. INFORMATION AND CONTROL, 2022, 51(5): 610-617, 630. DOI: 10.13976/j.cnki.xk.2022.1241
    [2]YANG Chao, GAO Zhe, HUANG Xiaomin, MA Ruicheng. Adaptive Extended Kalman Filters for Nonlinear Fractional-order Systems with Colored Noises[J]. INFORMATION AND CONTROL, 2019, 48(5): 580-588. DOI: 10.13976/j.cnki.xk.2019.9026
    [3]CHEN Shiming, ZHENG Linan, WU Longlong, FANG Huajing. A Fast and Adaptive SLAM Algorithm for Mobile Robots in Three-dimensional Space[J]. INFORMATION AND CONTROL, 2012, 41(4): 419-424. DOI: 10.3724/SP.J.1219.2012.00419
    [4]ZOU Weijun, BO Yuming, CHEN Yi. An Particle Filter Algorithm for the Low Measuring Noise System[J]. INFORMATION AND CONTROL, 2010, 39(1): 1-5.
    [5]XIE Hong-mei, MA Yun-hong. A Novel Algorithm for Signal Parameter Estimation in Chaotic Noise[J]. INFORMATION AND CONTROL, 2005, 34(1): 71-74.
    [6]SUN Shu-li, DENG Zi-li. NEW FIXED-LAG KALMAN SMOOTHERS WITH WHITE NOISE ESTIMATORS[J]. INFORMATION AND CONTROL, 2002, 31(4): 336-340.
    [7]DENG Zili, LIU Shujun. SINGLE CHANNL SELF-TUNING WHITE NOISE DECONVOLUTION SMOOTHER[J]. INFORMATION AND CONTROL, 1995, 24(3): 129-134.
    [8]ZHANG Huanshui, DENG Zili. MULTIVARIABLE SELF-TUNING DECONVOLUTION FILTER WITH COLOURED OBSERVATION NOISE[J]. INFORMATION AND CONTROL, 1994, 23(2): 94-100.
    [9]DENG Zili, QIN Bin, ZHANG Huanshui. A SELF-TUNING KALMAN FILTER WITH THE COLOURED OBSERVATION NOISE AND INPUT ESTIMATION AND ITS APPLICATION[J]. INFORMATION AND CONTROL, 1993, 22(1): 6-12.
    [10]DENG Zili, WANG Jian'guo. A FICTITIOUS NOISE COMPENSATING TECHNIQUE OF ADAPTIVE KALMAN FILTERING FOR SYSTEMS WITH MODEL ERRORS[J]. INFORMATION AND CONTROL, 1988, 17(1): 1-4.

Catalog

    Article views (1999) PDF downloads (142) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return