基于线性规划的分数阶系统有理函数逼近方法

左信, 庄馨, 许鋆, 谭壮壮

左信, 庄馨, 许鋆, 谭壮壮. 基于线性规划的分数阶系统有理函数逼近方法[J]. 信息与控制, 2014, 43(6): 697-704,710. DOI: 10.13976/j.cnki.xk.2014.0697
引用本文: 左信, 庄馨, 许鋆, 谭壮壮. 基于线性规划的分数阶系统有理函数逼近方法[J]. 信息与控制, 2014, 43(6): 697-704,710. DOI: 10.13976/j.cnki.xk.2014.0697
ZUO Xin, ZHUANG Xin, XU Jun, TAN Zhuangzhuang. Rational Function Approximation Method for Fractional Order System Based on Linear Programming[J]. INFORMATION AND CONTROL, 2014, 43(6): 697-704,710. DOI: 10.13976/j.cnki.xk.2014.0697
Citation: ZUO Xin, ZHUANG Xin, XU Jun, TAN Zhuangzhuang. Rational Function Approximation Method for Fractional Order System Based on Linear Programming[J]. INFORMATION AND CONTROL, 2014, 43(6): 697-704,710. DOI: 10.13976/j.cnki.xk.2014.0697
左信, 庄馨, 许鋆, 谭壮壮. 基于线性规划的分数阶系统有理函数逼近方法[J]. 信息与控制, 2014, 43(6): 697-704,710. CSTR: 32166.14.xk.2014.0697
引用本文: 左信, 庄馨, 许鋆, 谭壮壮. 基于线性规划的分数阶系统有理函数逼近方法[J]. 信息与控制, 2014, 43(6): 697-704,710. CSTR: 32166.14.xk.2014.0697
ZUO Xin, ZHUANG Xin, XU Jun, TAN Zhuangzhuang. Rational Function Approximation Method for Fractional Order System Based on Linear Programming[J]. INFORMATION AND CONTROL, 2014, 43(6): 697-704,710. CSTR: 32166.14.xk.2014.0697
Citation: ZUO Xin, ZHUANG Xin, XU Jun, TAN Zhuangzhuang. Rational Function Approximation Method for Fractional Order System Based on Linear Programming[J]. INFORMATION AND CONTROL, 2014, 43(6): 697-704,710. CSTR: 32166.14.xk.2014.0697

基于线性规划的分数阶系统有理函数逼近方法

基金项目: 国家自然科学基金资助项目(61104218)
详细信息
    作者简介:

    左信(1964-),男,教授,博士生导师.研究领域为先进控制理论与应用,安全保护控制系统;
    庄馨(1988-),女,硕士生.研究领域为分数阶系统的控制与应用;
    许鋆(1983-),女,博士,副教授.研究领域为非线性系统辨识,预测控制.

    通讯作者:

    左信, zuox@cup.edu.cn

  • 中图分类号: TP273

Rational Function Approximation Method for Fractional Order System Based on Linear Programming

  • 摘要: 针对分数阶系统在进行有理函数近似时,往往会存在得到的有理函数阶次较高、近似精度低或优化速度慢等问题,本文基于频域误差极小化原理,提出了一种利用低阶有理传递函数逼近分数阶系统的方法. 该方法将分数阶系统和其有理逼近函数之间的误差极小化运算转化为一个线性规划问题进行求解,避免了求解方程组和非线性问题的复杂运算. 仿真验证结果表明,与Charef近似法及Oustaloup近似法相比,在整个需要逼近的频段内,利用该方法得到的有理逼近函数能够以较低的阶次达到较好的近似效果.该方法不仅适用于具有分数次幂极点的系统,也适用于由分数阶微分算子组成的一般形式的分数阶系统,且降低了计算复杂度,提高了优化速度.
    Abstract: The rational approximation of a fractional order system usually has some disadvantages: the order of the rational transfer function is high, the approximating precision is low, and the optimization speed is too slow. We propose a method of approximating the fractional order system using a lower order rational transfer function based on error minimum theory in the frequency domain. The method transforms the calculation of the minimum error between the fractional order system and its rational approximation function into a linear programming problem, thus avoiding having to solve a system of equations and nonlinear problems. Simulation results show that the rational approximation function constructed by the proposed method can achieve a better approximation effect with lower order in the whole frequency range of interest compared with the Charef and Oustaloup methods. The proposed method can apply to systems with fractional power poles and general fractional order systems composed of fractional order differential operators. The proposed method reduces the computation complexity and improves the optimization speed.
  • [1] Torvik P J, Bagley R L. On the appearance of the fractional derivative in the behavior of real materials[J]. Journal of Applied Mechanics, 1984, 51(2): 294-298.
    [2] Caputo M. Distributed order differential equations modeling dielectric induction and diffusion[J]. Fractional Calculus and Applied Analysis, 2001, 4(4): 421-442.
    [3] Bisquert J, Compte A. Theory of the electrochemical impedance of anomalous diffusion[J]. Journal of Electroanalytical Chemistry, 2001, 499(1): 112-120.
    [4] 赵元英, 袁晓, 滕旭东, 等. 常用周期信号的分数微分运算[J]. 四川大学学报: 工程科学版, 2004, 36(2): 94-97. Zhao Y Y, Yuan X, Teng X D, et al. Fractional order differentiation of periodical signals[J]. Journal of Sichuan University: Engineering Science Edition, 2004, 36(2): 94-97.
    [5] Xue D Y, Zhao C N, Chen Y Q. A modified approximation method of fractional order system[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, NJ, USA: IEEE, 2006: 1043-1048.
    [6] Vinagre B M, Chen Y Q, Petras I. Two direct Tustin discretization methods for fractional-order differentiation/integrator[J]. Journal of the Franklin Institute, 2003, 340(5): 349-362.
    [7] Hamdaoui K, Charef A. A new discretization method for fractional order differentiators via the bilinear transformation[C]//Proceedings of the 15th International Conference on Digital Signal Processing. Piscataway, NJ, USA: IEEE, 2007: 280-283.
    [8] Tricaud C, Chen Y Q. An approximate method for numerically solving fractional order optimal control problems of general form[J]. Computers and Mathematics with Applications, 2010, 59(5): 1644-1655.
    [9] Charef A, Sun H, Tsao Y, et al. Fractional system as represented by singularity function[J]. IEEE Transactions on Automatic Control, 1992, 37(9): 1465-1470.
    [10] Meng L, Xue D Y. A new approximation algorithm of fractional order system models based optimization[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(4): 044504.
    [11] Oustaloup A, Levron F, Mathieu B, et al. Frequency-band complex noninteger differentiator: Characterization and synthesis[J]//IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications, 2000, 47(1): 25-39.
    [12] Levy E C. Complex-curve fitting[J]. IRE Transactions on Automatic Control, 1959(4): 37-44.
    [13] 张启人. 大系统模型降阶理论[J]. 信息与控制, 1980, 32(4): 2-25. Zhang Q R. Model reduction theory for a large scale system[J]. Information and Control, 1980, 32(4): 2-25.
    [14] 董雯彬. 分数阶线性时不变系统的降阶算法研究[D]. 沈阳: 东北大学, 2010. Dong W B. Research into the reduction algorithm for linear time invariant fractional order dynamic system[D]. Shenyang: Northeastern University, 2010.
    [15] 李文, 赵慧敏. 一种分数阶微积分算子的有理函数逼近方法[J]. 自动化学报, 2011, 37(8): 999-1005. Li W, Zhao H M. Rational function approximation for fractional order differential and integral operators[J]. Acta Automatica Sinica, 2011, 37(8): 999-1005.
    [16] Santouh Z, Charef A, Assabaa M. Approximation of multiple fractional order systems[J]. Arab Research Institution Science Engineering, 2007, 3(4): 155-161.
    [17] Sun H, Onaral B. A unified approach to represent metal electrode polarization[J]. IEEE Transactions on Biomedical Engineering, 1983, 30(7): 399-406.
    [18] Li M, Lim S C, Chen S Y. Exact solution of impulse response to a class of fractional oscillators and its stability[J]. Mathematical Problems in Engineering, 2011, 2011: ID 657839.
    [19] Achar B N N, Hanneken J W, Enck T, et al. Dynamics of the fractional oscillator[J]. Physica A, 2001, 297(3/4): 361-367.
    [20] Achar B N N, Hanneken J W, Clarke T. Damping characteristics of a fractional oscillator[J]. Physica A, 2004, 339(3/4): 311-319.
    [21] Li M, Lim S C, Cattani C, et al. Characteristic roots of a class of fractional oscillators[J]. Advances in High Energy Physics, 2013, 2013: ID 853925.
计量
  • 文章访问数:  978
  • HTML全文浏览量:  0
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-07
  • 发布日期:  2014-12-19

目录

    /

    返回文章
    返回
    x