基于随机模型预测控制的自主车辆转向控制

王秋, 曲婷, 陈虹

王秋, 曲婷, 陈虹. 基于随机模型预测控制的自主车辆转向控制[J]. 信息与控制, 2015, 44(4): 499-506. DOI: 10.13976/j.cnki.xk.2015.0499
引用本文: 王秋, 曲婷, 陈虹. 基于随机模型预测控制的自主车辆转向控制[J]. 信息与控制, 2015, 44(4): 499-506. DOI: 10.13976/j.cnki.xk.2015.0499
WANG Qiu, QU Ting, CHEN Hong. Steering Control of Autonomous Vehicles Based on Stochastic Model Predictive Control[J]. INFORMATION AND CONTROL, 2015, 44(4): 499-506. DOI: 10.13976/j.cnki.xk.2015.0499
Citation: WANG Qiu, QU Ting, CHEN Hong. Steering Control of Autonomous Vehicles Based on Stochastic Model Predictive Control[J]. INFORMATION AND CONTROL, 2015, 44(4): 499-506. DOI: 10.13976/j.cnki.xk.2015.0499
王秋, 曲婷, 陈虹. 基于随机模型预测控制的自主车辆转向控制[J]. 信息与控制, 2015, 44(4): 499-506. CSTR: 32166.14.xk.2015.0499
引用本文: 王秋, 曲婷, 陈虹. 基于随机模型预测控制的自主车辆转向控制[J]. 信息与控制, 2015, 44(4): 499-506. CSTR: 32166.14.xk.2015.0499
WANG Qiu, QU Ting, CHEN Hong. Steering Control of Autonomous Vehicles Based on Stochastic Model Predictive Control[J]. INFORMATION AND CONTROL, 2015, 44(4): 499-506. CSTR: 32166.14.xk.2015.0499
Citation: WANG Qiu, QU Ting, CHEN Hong. Steering Control of Autonomous Vehicles Based on Stochastic Model Predictive Control[J]. INFORMATION AND CONTROL, 2015, 44(4): 499-506. CSTR: 32166.14.xk.2015.0499

基于随机模型预测控制的自主车辆转向控制

基金项目: 国家自然科学基金重大研究计划集成项目(91220301);国家973课题资助项目(2012CB821202)
详细信息
    作者简介:

    王秋(1989-),女,硕士生.研究领域为随机模型预测控制.
    曲婷(1982-),女,博士生.研究领域为随机模型预测控制,驾驶员模型等.
    陈虹(1963-),女,博士生导师,教授.研究领域为预测控制,鲁棒控制,非线性控制和汽车控制.

    通讯作者:

    陈虹,chenh@jlu.edu.cn

  • 中图分类号: TP182

Steering Control of Autonomous Vehicles Based on Stochastic Model Predictive Control

  • 摘要: 车辆系统实际存在的诸多不确定性因素会对控制器的性能产生严重影响.首先在传统自行车模型的基础上,充分考虑模型简化过程中可能产生的未建模动态,建立考虑未建模动态的车辆二自由度模型;其次根据随机模型预测控制算法设计转向控制器,实现对车辆侧向轨迹的跟踪.为证明该算法的有效性,结合车辆动力学软件veDYNA在车辆运行的各种工况下进行仿真研究,都实现了较好的跟踪效果.为进一步验证建模过程中考虑的未建模动态的影响,设计了两个控制器并做了一系列的实验,结果表明对车辆的非线性进行补偿可以提高轨迹跟踪的精度.
    Abstract: Numerous uncertainty factors in vehicle systems adversely affect the performance of the vehicle steering controller. To rectify this problem, we present a number of counter measures. First, a two-degree-of-freedom vehicle model is proposed; this model is based on the traditional bicycle model and considers possible unmodeled dynamics resulting from simplification of the bicycle model. Then, a steering controller that uses the stochastic model predictive control (SMPC) algorithm is designed to track lateral trajectory. To verify the effectiveness of the proposed algorithm, we perform simulations under various vehicle running conditions using the vehicle dynamics software (veDYNA). The simulation results show that the controller can achieve perfect tracking. To further verify the effects of considering unmodeled dynamics in the model, two controllers are designed and a series of experiments are conducted. The results suggest that the compensation for nonlinear motion can improve the accuracy of trajectory tracking.
  • [1] 黄岩, 吴军, 刘春明, 等. 自主车辆发展概况及关键技术[J]. 兵工自动化, 2010, 29(11): 8-13, 26. Huang Y, Wu J, Liu C M, et al. Overview and key technologies of autonomous vehicles[J]. Ordnance Industry Automation, 2010, 29(11): 8-13, 26.
    [2] 唐飞云. 自主导航车轨迹跟踪控制方法研究[D]. 大连: 大连理工大学, 2012. Tang F Y. Trajectory tracking control method for an autonomous guided vehicle[D]. Dalian: Dalian University of Technology, 2012.
    [3] 史先鹏, 刘士荣. 机械臂轨迹跟踪控制研究进展[J]. 控制工程, 2011, 18(1): 116-122. Shi X P, Liu S R. A survey of trajectory tracking control for robot manipulators[J]. Control Engineering of China, 2011, 18(1): 116-122.
    [4] 曹凯, 于善义, 于少伟. 基于多隐马尔可夫模型的车辆机动行为识别与预测[J]. 信息与控制, 2014, 43(4): 506-512. Cao K, Yu S Y, Yu S W. Maneuver behavior identification and prediction for vehicles based on multi-hidden markov model[J]. Information and Control, 2014, 43(4): 506-512.
    [5] Hayakawa Y, White R, Kimura T, et al. Driver-compatible steering system for wide speed-range path following[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3): 544-552.
    [6] Peng H, Tomizuka M. Preview control for vehicle lateral guidance in highway automation[J]. Journal of Dynamic Systems, Measurement and Control Transactions of the Asme, 1993, 115(4): 679-686.
    [7] Enache N M, Mammar S, Netto M, et al. Driver steering assistance for lane-departure avoidance based on hybrid automata and composite Lyapunov function[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1): 28-39.
    [8] Falcone P, Borrelli F, Asgari J, et al. Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology, 2007, 15(3): 566-580.
    [9] Trabia M B, Shi L Z, Hodge N E. A fuzzy logic controller for autonomous wheeled vehicles[M]//Mobile Robots, Moving Intelligence. Berlin, Germany: Springer, 2006: 176-200.
    [10] 彭昕. 具有未建模动态系统的自适应控制[D]. 成都: 西南交通大学, 2010. Peng X. Adaptive control of system with unmodeled dynamics[D]. Chengdu: Southwest Jiaotong University, 2010.
    [11] 余志生. 汽车理论[M]. 北京: 机械工业出版社, 2009. Yu Z S. Elementary vehicle dynamics[M]. Beijing: Mechanical Industry Press, 2009.
    [12] Setlur P, Wagner J R, Dawson D M, et al. A trajectory tracking steer-by-wire control system for ground vehicles[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 76-85.
    [13] 刘志强, 李伟强. 基于驾驶员视角的汽车行驶轨迹跟踪模型[J]. 农业机械学报, 2007, 38(7): 35-38. Liu Z Q, Li W Q. Driver model based on driver's heading angle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(7): 35-38.
    [14] 周聪. 基于非线性估计理论的线控转向汽车状态估计研究[D]. 成都: 西南交通大学, 2012. Zhou C. Research on vehicle state estimation with steer-by-wire system based on nonlinear estimation method[D]. Chengdu: Southwest Jiaotong University, 2012.
    [15] 任佳星. 基于免疫算法的智能车辆运动控制研究[D]. 太原: 中北大学, 2012. Ren J X. Research on intelligent vehicle motion control based on immune algorithm[D]. Taiyuan: North Central of China, 2012.
    [16] Ji Y, Guo H Y, Chen H. Integrated control of active front steering and direct yaw moment based on model predictive control[C]//The 26th Chinese Control and Decision Conference (CCDC). Piscataway, NJ, USA: IEEE, 2014: 2044-2049.
    [17] 陈虹. 模型预测控制[M]. 北京: 科学出版社, 2013. Chen H. Model predictive control[M]. Beijing: Science Press, 2013.
    [18] 张华玉. 自主驾驶车辆速度及道路坡度估计研究[D]. 长春: 吉林大学, 2013. Zhang H Y. Estimate road grade and velocity for autonomous driving vehicle[D]. Changchun: Jinlin University, 2013.
    [19] 北京九州恒润科技有限公司. Tesis DYNAware——基于Matlab/Simulink的车辆动力学实时仿真模型[J]. CAD/CAM与制造业信息化, 2004(3): 72-74. Beijing Jiuzhouhengrun Science and Technology Co., Ltd. Tesis DYNAware - real-time vehicle dynamics simulation model based on Matlab/Simulink[J]. CAD/CAM Yu Zhizhaoye Xinxihua, 2004(3): 72-74.
    [20] 周红妮. 车辆稳定性控制方法与策略的比较研究[D]. 武汉: 武汉科技大学, 2006. Zhou H N. The comparison research on control method and strategy of vehicle stability[D]. Wuhan: Wuhan University of Science and Technology, 2006.
计量
  • 文章访问数:  1494
  • HTML全文浏览量:  1
  • PDF下载量:  1386
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-30
  • 发布日期:  2015-08-19

目录

    /

    返回文章
    返回
    x