基于递推闭环子空间辨识的自适应预测控制方法

An Adaptive Predictive Control Method Based on Recursive Closed-loop Subspace Identification

  • 摘要: 针对存在噪声干扰与时变特性的线性系统的模型不确定性问题,提出了一种基于递推闭环子空间辨识的自适应预测控制方法. 通过结合PID(proportional-integral-derivative)控制采用新的目标函数,对闭环子空间预测控制算法进行改进,推导出具有类似PID结构的闭环子空间预测控制算法;采用固定输入输出数据集大小的递推方法将改进后的算法在线实施,通过采用一种简单直观的更新方法代替LQ分解,有效提高了在线计算效率. 最后,通过仿真实验验证了方法的有效性.

     

    Abstract: In order to deal with model uncertainty problem for linear systems with time-variability, which exists due to noise perturbances in the model, an adaptive predictive control method is proposed based on recursive closed-loop subspace identification. A closed-loop subspace predictive control algorithm is constructed by making improvements to the closed-loop subspace predictive control algorithm through the incorporation of a PID-type objective function. This proposed algorithm is implemented online using a recursive algorithm, with fixed-size input and output data, and a simple, direct update method, which replaces LQ decompositions, for improving computational efficiency. Simulations prove this closed-loop subspace control algorithm to be efficient, predictive, and adaptive.

     

/

返回文章
返回