Citation: | DU Shengli, ZHANG Qingda, CAO Boqi, QIAO Junfei. A Review of Model Predictive Control for Urban Wastewater Treatment Process[J]. INFORMATION AND CONTROL, 2022, 51(1): 41-53. DOI: 10.13976/j.cnki.xk.2022.0101 |
Nonlinearities, uncertainties, and complex biochemical reactions are the main characteristics of the urban wastewater treatment process. It is challenging to ensure that the effluent water quality within the specified range is subject to strong interferences such as the flow of influent water, the composition of the influent water and weather changes. Model predictive control has been widely used in urban wastewater treatment in recent years due to its advantages of solving nonlinear system and problems with explict constraints. This study introduces the reasearch status of model predictive control method in urban wastewater treatment process based on mechanism model and data-driven, and elaborated the control effect under different models and control variables. Finally, problems that still need to be solved in the urban wastewater treatment process are presented. Future research directions of the model predictive control in the urban wastewater treatment process control are suggested.
[1] |
Habib R Z, Thiemann T, Al Kendi R. Microplastics and wastewater treatment plants-A review[J]. Journal of Water Resource and Protection, 2020, 12(1): 1-35. doi: 10.4236/jwarp.2020.121001
|
[2] |
蔡婕萍, 左高山, 许和连. 虚拟水: 国际水资源管理与启示[J]. 生态经济, 2019, 35(10): 200-206, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201910033.htm
Cai J P, Zuo G S, Xu H L. Virtual water: The analysis and enlightment of international water resources management[J]. Ecological Economy, 2019, 35(10): 200-206, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201910033.htm
|
[3] |
Franco E G. The global risks report 2020[C]//World Economic Forum. Piscataway, USA: IEEE, 2020.
|
[4] |
习近平主持召开科学家座谈会并发表重要讲话[J]. 中国信息安全, 2020(9): 6-7.
Xi Jinping presided over a symposium of scientists and delivered an important speech[J]. China Information Security, 2020(9): 6-7.
|
[5] |
Wang Z. China's wastewater treatment goals[J]. Science, 2012, 338(6107): 604-604. https://www.ncbi.nlm.nih.gov/pubmed/23118166
|
[6] |
中华人民共和国生态环境部. 《国家环境保护标准"十三五"发展规划》[EB/OL]. [2017-04-10]. https://www.mee.gov.cn/gkml/hbb/b-wj/201704/W020170414581772760139.pdf.
Ministry of Ecology and Environment of the People's Republic of China. 《National 13~(th) five-year plan for standards for the environmental protection》[EB/OL]. [2017-04-10]. https://www.mee.gov.cn/gkml/hbb/bwj/201704/W020170414581772760139.pdf.
|
[7] |
马乐宽, 谢阳村, 文宇立, 等. 重点流域水生态环境保护"十四五"规划编制思路与重点[J]. 中国环境管理, 2020, 12(4): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL202004007.htm
Ma L K, Xie Y C, Wen Y L, et al. The idea and key point of drawing up the "14th Five-Year" plan of water ecological environment protection in key river basin[J]. Chinese Journal of Environmental Management, 2020, 12(4): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL202004007.htm
|
[8] |
王晓莲, 彭永臻. A2/O法污水生物脱氮除磷处理技术与应用[M]. 第1版. 北京: 科学出版社, 2009.
Wang X L, Peng Y Z. Technology and application of biological nitrogen and phosphorus removal of wastewater by A2/O process[M]. 1st ed. Beijing: Science Press, 2009.
|
[9] |
Gujer W. Nitrification and me-A subjective review[J]. Water Research, 2010, 44(1): 1-19. doi: 10.1016/j.watres.2009.08.038
|
[10] |
Wu F C, Tseng R L, Huang S C, et al. Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review[J]. Chemical Engineering Journal, 2009, 151(1): 1-9. https://www.sciencedirect.com/science/article/pii/S1385894709001429
|
[11] |
Nagy-Kiss A M, Schutz G. Estimation and diagnosis using multi-models with application to a wastewater treatment plant[J]. Journal of Process Control, 2013, 23(10): 1528-1544. doi: 10.1016/j.jprocont.2013.09.027
|
[12] |
Number/capacity of wastewater treatment plants in China and development states of wastewater treatment plants in each province in 2019[EB/OL]. [2021-01-13]. https://www.chyxx.com/industry/202002/8-36168.html.
|
[13] |
Lu J Y, Wang X M, Liu H Q, et al. Optimizing operation of municipal wastewater treatment plants in China: The remaining barriers and future implications[J]. Environment International, 2019, 129: 273-278. doi: 10.1016/j.envint.2019.05.057
|
[14] |
He Y, Zhu Y S, Chen J H, et al. Assessment of energy consumption of municipal wastewater treatment plants in China[J]. Journal of Cleaner Production, 2019, 228: 399-404. doi: 10.1016/j.jclepro.2019.04.320
|
[15] |
Ben W W, Zhu B, Yuan X J, et al. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes[J]. Water Research, 2018, 130: 38-46. doi: 10.1016/j.watres.2017.11.057
|
[16] |
Wahab N A, Katebi R, Balderud J. Multivariable PID control design for activated sludge process with nitrification and denitrification[J]. Biochemical Engineering Journal, 2009, 45(3): 239-248. doi: 10.1016/j.bej.2009.04.016
|
[17] |
Harja G, Nascu I, Muresan C, et al. Improvements in dissolved oxygen control of an activated sludge wastewater treatment process[J]. Circuits, Systems, and Signal Processing, 2016, 35(6): 2259-2281. doi: 10.1007/s00034-016-0282-y
|
[18] |
Chachuat B, Roche N, Latifi M A. Optimal aeration control of industrial alternating activated sludge plants[J]. Biochemical Engineering Journal, 2005, 23(3): 277-289. doi: 10.1016/j.bej.2005.01.012
|
[19] |
Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7): 733-764. doi: 10.1016/S0967-0661(02)00186-7
|
[20] |
Jeong E, Kim H W, Nam J Y, et al. Enhancement of bioenergy production and effluent quality by integrating optimized acidification with submerged anaerobic membrane bioreactor[J]. Bioresource Technology, 2010, 101(1): S7-S12. doi: 10.1016/j.biortech.2009.04.064
|
[21] |
Verrecht B, Maere T. Model-based energy optimisation of a small-scale decentralised membrane bioreactor for urban reuse[J]. Water Research, 2010, 44(14): 4047-4056. doi: 10.1016/j.watres.2010.05.015
|
[22] |
Gómez-Brandón M, Podmirseg S M. Biological waste treatment[J]. Waste Management and Research, 2013, 31(8): 773-774. doi: 10.1177/0734242X13497685
|
[23] |
Lin C K, Katayama Y, Hosomi M, et al. The characteristics of the bacterial community structure and population dynamics for phosphorus removal in SBR activated sludge processes[J]. Water Research, 2003, 37(12): 2944-2952. doi: 10.1016/S0043-1354(02)00568-7
|
[24] |
Olsson G, Newell B. Wastewater treatment systems: Modelling diagnosis and control[M]. London, UK: IWA Publishing, 1999.
|
[25] |
Jurado E, Camacho F, Luzón G, et al. Kinetics of the enzymatic hydrolysis of triglycerides in o / w emulsions: Study of the initial rates and the reaction time course[J]. Biochemical Engineering Journal, 2008, 40(3): 473-484. doi: 10.1016/j.bej.2008.02.002
|
[26] |
Srinivasan B, Palanki S, Bonvin D. Dynamic optimization of batch processes I: Characterization of the nominal solution[J]. Computers and Chemical Engineering, 2003, 27(1): 1-26. doi: 10.1016/S0098-1354(02)00116-3
|
[27] |
马勇, 彭永臻. 城市污水处理系统运行及过程控制[M]. 第1版. 北京: 科学出版社, 2007.
Ma Y, Peng Y Z. Operation and process control of municipal sewage treatment system[M]. 1st ed. Beijing: Science Press, 2007.
|
[28] |
Brdjanovic D, Slamet A, VanLoosdrecht M C, et al. Impact of excessive aeration on biological phosphorus removal from wastewater[J]. Water Research, 1998, 32(1): 200-208. doi: 10.1016/S0043-1354(97)00183-8
|
[29] |
Katie A T, Mark N, Ralf C R. The effect of dissolved oxygen on PHB Accumulation in activated sludge cultures[J]. Biotechnology and Bioengineering, 2003, 82(2): 238-250. doi: 10.1002/bit.10564
|
[30] |
Rojas J D, Flores-Alsina X, Jeppsson U, et al. Application of multivariate virtual reference feedback tuning for wastewater treatment plant control[J]. Control Engineering Practice, 2012, 20(5): 499-510. doi: 10.1016/j.conengprac.2012.01.004
|
[31] |
Kasmi M, Hamdi M, Trabelsi I. Eco-friendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse[J]. Water Science and Technology, 2017, 75(1/2): 39-47. https://www.ncbi.nlm.nih.gov/pubmed/28067644
|
[32] |
Longo S, Hospido A, Lema J M, et al. A systematic methodology for the robust quantification of energy efficiency at wastewater treatment plants featuring data envelopment analysis[J]. Water Research, 2018, 141: 317-328. doi: 10.1016/j.watres.2018.04.067
|
[33] |
Hreiz R, Latifi M A, Roche N. Optimal design and operation of activated sludge processes: State-of-the-art[J]. Chemical Engineering Journal, 2015, 281: 900-920. doi: 10.1016/j.cej.2015.06.125
|
[34] |
于广平, 苑明哲, 王宏. 活性污泥法污水处理数学模型的发展和应用[J]. 信息与控制, 2006, 35(5): 614-618. doi: 10.3969/j.issn.1002-0411.2006.05.014
Yu G P, Fan M Z, Wang H. Development and application of activated sludge mathematical modes for wastewater treatment process[J]. Information and Control, 2006, 35(5): 614-618. doi: 10.3969/j.issn.1002-0411.2006.05.014
|
[35] |
Gernaey K V, Rosen C, Jeppsson U. WWTP dynamic disturbance modelling an essential module for long-term benchmarking development[J]. Water Science and Technology, 2006, 53(4/5): 225-234. https://pubmed.ncbi.nlm.nih.gov/16722073/
|
[36] |
Holenda B, Domokos E, Redey A, et al. Dissolved oxygen control of the activated sludge wastewater treatment process using predictive control[J]. Computers and Chemical Engineering, 2008, 32(6): 1278-1286. https://www.sciencedirect.com/science/article/pii/S009813540700155X
|
[37] |
Santín I, Pedret C, Vilanova R. Applying variable dissolved oxygen set point in a two level hierarchical control structure to a wastewater treatment process[J]. Journal of Process Control, 2015, 28: 40-55. doi: 10.1016/j.jprocont.2015.02.005
|
[38] |
Piotrowski R, Brdys M A, Konarczak K, et al. Hierarchical dissolved oxygen control for activated sludge processes[J]. Control Engineering Practice, 2008, 16(1): 114-131. doi: 10.1016/j.conengprac.2007.04.005
|
[39] |
Sadeghassadi M, Macnab C J B, Gopaluni B, et al. Application of neural networks for optimal-setpoint design and MPC control in biological wastewater treatment[J]. Computers and Chemical Engineering, 2018, 115: 150-160. doi: 10.1016/j.compchemeng.2018.04.007
|
[40] |
Santin I, Pedret C, Vilanova R. Fuzzy control and model predictive control configurations for effluent violations removal in wastewater treatment plants[J]. Industrial and Engineering Chemistry Research, 2015, 54(10): 2763-2775. doi: 10.1021/ie504079q
|
[41] |
Harja G, Vlad G, Nascu I. Dissolved oxygen control strategy for an activated sludge wastewater treatment process. recent advances in electrical engineering series. recent advances in systems[C]//19th International Conference on Systems. Piscataway, USA: IEEE, 2015: 453-458.
|
[42] |
Yang T, Zhang L, Chadli M. Fuzzy modeling of activated sludge wastewater treatment processes and predictive control of dissolved oxygen[C]//2013 IEEE International Symposium on Industrial Electronics. Piscataway, USA: IEEE, 2013: 1-6.
|
[43] |
Stare A, Hvala N, Vrecko D. Modeling, identification, and validation of models for predictive ammonia control in a wastewater treatment plant-A case study[J]. ISA Transactions, 2006, 45(2): 159-174. doi: 10.1016/S0019-0578(07)60187-6
|
[44] |
Vrečko D, Hvala N, Stražar M. The application of model predictive control of ammonia nitrogen in an activated sludge process[J]. Water Science and Technology, 2011, 64(5): 1115-1121. doi: 10.2166/wst.2011.477
|
[45] |
Mulas M, Tronci S, Corona F, et al. Predictive control of an activated sludge process: An application to the Viikinmäki wastewater treatment plant[J]. Journal of Process Control, 2015, 35: 89-100. doi: 10.1016/j.jprocont.2015.08.005
|
[46] |
Liu X, Jing Y, Xu J, et al. Ammonia control of a wastewater treatment process using model predictive control[C]//The 26th Chinese Control and Decision Conference. Piscataway, USA: IEEE, 2014: 494-498.
|
[47] |
Francisco M, Vega P, Revollar S. Model predictive control of BSM1 benchmark of wastewater treatment process: A tuning procedure[C]//50th IEEE Conference on Decision and Control and European Control Conference. Piscataway, USA: IEEE, 2011: 7057-7062.
|
[48] |
Grochowski M, Rutkowski T A. Supervised model predictive control of wastewater treatment plant[C]//21st International Conference on Methods and Models in Automation and Robotics. Piscataway, USA: IEEE, 2016: 613-618.
|
[49] |
Xu H, Vilanova R. Comparison of control strategies on combined biological phosphorus and nitrogen removal wastewater treatment process[C]//17th International Conference on System Theory, Control and Computing. Piscataway, USA: IEEE, 2013: 595-600.
|
[50] |
Xu H, Vilanova R. Application of fuzzy control on wastewater treatment plant for P-removal[C]//23rd Mediterranean Conference on Control and Automation. Piscataway, USA: IEEE, 2015: 545-550.
|
[51] |
Santín I, Pedret C, Vilanova R. Applying variable dissolved oxygen set point in a two level hierarchical control structure to a wastewater treatment process[J]. Journal of Process Control, 2015, 28: 40-55. doi: 10.1016/j.jprocont.2015.02.005
|
[52] |
Yang T, Zhang L, Wang A, et al. Fuzzy modeling approach to predictions of chemical oxygen demand in activated sludge processes[J]. Information Sciences, 2013, 235: 55-64. doi: 10.1016/j.ins.2012.07.021
|
[53] |
Diehl M, Amrit R, Rawlings J B. A Lyapunov function for economic optimizing model predictive control[J]. IEEE Transactions on Automatic Control, 2010, 56(3): 703-707. https://ieeexplore.ieee.org/abstract/document/5672577
|
[54] |
Harja G, Vlad G, Nascu I. MPC advanced control of dissolved oxygen in an activated sludge wastewater treatment plant[C]//IEEE International Conference on Automation, Quality and Testing, Robotics. Piscataway, USA: IEEE, 2016: 1-6.
|
[55] |
Hong Y X, Pedret C, Santin I, et al. Decentralized model predictive control for N and P removal in wastewater treatment plants[C]//22nd International Conference on System Theory, Control and Computing. Piscataway, USA: IEEE, 2018: 224-230.
|
[56] |
Zeng J, Liu J. Economic model predictive control of wastewater treatment processes[J]. Industrial and Engineering Chemistry Research, 2015, 54(21): 5710-5721. doi: 10.1021/ie504995n
|
[57] |
Zhang A, Liu J. Economic MPC of wastewater treatment plants based on model reduction[J]. Processes, 2019, 7(10): 682. doi: 10.3390/pr7100682
|
[58] |
Zhang A, Yin X, Liu S, et al. Distributed economic model predictive control of wastewater treatment plants[J]. Chemical Engineering Research and Design, 2019, 141: 144-155. doi: 10.1016/j.cherd.2018.10.039
|
[59] |
Vega P, Revollar S, Francisco M, et al. Integration of set point optimization techniques into nonlinear MPC for improving the operation of WWTPs[J]. Computers and Chemical Engineering, 2014, 68: 78-95. doi: 10.1016/j.compchemeng.2014.03.027
|
[60] |
Revollar S, Vega P, Francisco M, et al. Optimization of economic and environmental objectives in a non linear model predictive control applied to a wastewater treatment plant[C]//2016 20th International Conference on System Theory, Control and Computing. Piscataway, USA: IEEE, 2016: 318-323.
|
[61] |
Moliner-Heredia R, Pe arrocha-Alós I, Sanchis-Llopis R. Economic model predictive control of wastewater treatment plants based on BSM1 using linear prediction models[C]//2019 IEEE 15th International Conference on Control and Automation. Piscataway, USA: IEEE, 2019: 73-78.
|
[62] |
Revollar S, Vega P, Vilanova R, et al. Optimal control of wastewater treatment plants using economic-oriented model predictive dynamic strategies[J]. Applied Sciences, 2017, 7(8): 813. doi: 10.3390/app7080813
|
[63] |
Boruah N, Roy B K. Event triggered nonlinear model predictive control for a wastewater treatment plant[J]. Journal of Water Process Engineering, 2019. DOI: 10. 1016/j.jwpe. 2019. 100887.
|
[64] |
Zeng G M, Qin X S, He L, et al. A neural network predictive control system for paper mill wastewater treatment[J]. Engineering Applications of Artificial Intelligence, 2003, 16(2): 121-129. doi: 10.1016/S0952-1976(03)00058-7
|
[65] |
Goldar A, Revollar S, Lamanna R, et al. Neural-MPC for N-removal in activated-sludge plants[C]//2014 European Control Conference. Piscataway, USA: IEEE, 2014: 808-813.
|
[66] |
Zhu Y, Hou Z, Qian F, et al. Dual RBFNNs-based model-free adaptive control with aspen HYSYS simulation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 759-765. doi: 10.1109/TNNLS.2016.2522098
|
[67] |
Luccarini L, Porra E, Spagni A, et al. Soft sensors for control of nitrogen and phosphorus removal from wastewaters by neural networks[J]. Water Science and Technology, 2002, 45(4/5): 101-107. https://iwaponline.com/wst/article/45/4-5/101/8457/Soft-sensors-for-control-of-nitrogen-and
|
[68] |
Yaqub M, Asif H, Kim S, et al. Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM)neural network[J]. Journal of Water Process Engineering, 2020. DOI: 10. 1016/j.jwpe. 2020. 101388.
|
[69] |
Comas J, Meabe E, Sancho L, et al. Knowledge-based system for automatic MBR control[J]. Water Science and Technology, 2010, 62(12): 2829-2836. doi: 10.2166/wst.2010.693
|
[70] |
Han H G, Qiao J F, Chen Q L. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network[J]. Control Engineering Practice, 2012, 20(4): 465-476. doi: 10.1016/j.conengprac.2012.01.001
|
[71] |
Han H, Qiao J. Nonlinear model-predictive control for industrial processes: An application to wastewater treatment process[J]. IEEE Transactions on Industrial Electronics, 2013, 61(4): 1970-1982. https://ieeexplore.ieee.org/abstract/document/6523075/
|
[72] |
Foscoliano C, Del Vigo S, Mulas M, et al. Predictive control of an activated sludge process for long term operation[J]. Chemical Engineering Journal, 2016, 304: 1031-1044. doi: 10.1016/j.cej.2016.07.018
|
[73] |
Mendes J, Araújo R, Souza F. Adaptive fuzzy identification and predictive control for industrial processes[J]. Expert Systems with Applications, 2013, 40(17): 6964-6975. doi: 10.1016/j.eswa.2013.06.057
|
[74] |
Yang T, Qiu W, Ma Y, et al. Fuzzy model-based predictive control of dissolved oxygen in activated sludge processes[J]. Neurocomputing, 2014, 136: 88-95. doi: 10.1016/j.neucom.2014.01.025
|
[75] |
Cheng L, Liu W, Hou Z G, et al. Neural-network-based nonlinear model predictive control for piezoelectric actuators[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7717-7727. doi: 10.1109/TIE.2015.2455026
|
[76] |
Han H G, Qian H H, Qiao J F. Nonlinear multiobjective model-predictive control scheme for wastewater treatment process[J]. Journal of Process Control, 2014, 24(3): 47-59. doi: 10.1016/j.jprocont.2013.12.010
|
[77] |
Han H, Zhang L, Qiao J. Data-based predictive control for wastewater treatment process[J]. IEEE Access, 2017, 6: 1498-1512. https://ieeexplore.ieee.org/document/8125676
|
[78] |
Han H, Liu Z, Hou Y, et al. Data-driven multiobjective predictive control for wastewater treatment process[J]. IEEE Transactions on Industrial Informatics, 2019, 16(4): 2767-2775. https://ieeexplore.ieee.org/document/8828076
|
[79] |
Park S, Choi J W, Seol J Y, et al. Expectation-maximization-based channel estimation for multiuser MIMO systems[J]. IEEE Transactions on Communications, 2017, 65(6): 2397-2410. doi: 10.1109/TCOMM.2017.2688447
|
[80] |
Deng Z, Jiang Y, Choi K S, et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(8): 1200-1212. doi: 10.1109/TNNLS.2013.2253617
|
[81] |
Deng Z, Choi K S, Jiang Y, et al. Generalized hidden-mapping ridge regression, knowledge-leveraged inductive transfer learning for neural networks, fuzzy systems and kernel methods[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2585-2599. doi: 10.1109/TCYB.2014.2311014
|
[82] |
Han H, Liu Z, Liu H, et al. Knowledge-data-driven model predictive control for a class of nonlinear systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(7): 4492-4504. https://ieeexplore.ieee.org/document/8825513
|
[83] |
Zhang J, Wan S. A review of explicit model predictive control[C]//31st Chinese Control Conference. Piscataway, USA: IEEE, 2012: 4233-4238.
|
[84] |
Akpan V A, Hassapis G D. Nonlinear model identification and adaptive model predictive control using neural networks[J]. ISA Transactions, 2011, 50(2): 177-194. doi: 10.1016/j.isatra.2010.12.007
|
[85] |
Li W, Li L, Qiu G. Energy consumption and economic cost of typical wastewater treatment systems in Shenzhen, China[J]. Journal of Cleaner Production, 2017, 163: S374-S378. doi: 10.1016/j.jclepro.2015.12.109
|
[86] |
Zhao X, Liu J, Liu Q, et al. Physical and virtual water transfers for regional water stress alleviation in China[J]. Proceedings of the National Academy of Sciences, 2015, 112(4): 1031-1035. doi: 10.1073/pnas.1404130112
|
[87] |
桂卫华, 王成红, 谢永芳, 等. 流程工业实现跨越式发展的必由之路[J]. 中国科学基金, 2015(5): 337-342. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201505005.htm
Gui W H. Wang C H, Xie Y F, et al. The necessary way to realize great-leap-forward development of process industries[J]. Bulletin of National Natural Science Foundation of China, 2015(5): 337-342. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201505005.htm
|
[88] |
Eggimann S, Mutzner L, Wani O, et al. The potential of knowing more: A review of data-driven urban water management[J]. Environmental Science and Technology, 2017, 51(5): 2538-2553. doi: 10.1021/acs.est.6b04267
|
[89] |
Aulinas M, Nieves J C, Cortés U, Poch M. Supporting decision making in urban wastewater systems using a knowledge-based approach[J]. Environmental Modelling and Software, 2011, 26(5): 562-572. doi: 10.1016/j.envsoft.2010.11.009
|
[90] |
王飞跃. 机器人的未来发展: 从工业自动化到知识自动化[J]. 科技导报, 2015, 33(21): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201521012.htm
Wang F Y. On future development of robotics: From industrial automation to knowledge automation[J]. Science and Technology Review, 2015, 33(21): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201521012.htm
|
[91] |
Zhang R D, Xue A K, Gao F R. Model predictive control[M]. Berlin, Germany: Springer, 2019.
|
[92] |
夏晓华, 刘波, 栾志业, 等. 基于PSO的预测控制及在聚丙烯中的应用[J]. 控制工程, 2006, 13(5): 401-403. doi: 10.3969/j.issn.1671-7848.2006.05.001
Xia X H, Liu B, Luan Z Y, et al. Predictive control based on PSO and its application in polypropylene[J]. Control Engineering, 2006, 13(5): 401-403. doi: 10.3969/j.issn.1671-7848.2006.05.001
|
[93] |
胡耀华, 贾欣乐. 广义预测控制的直接算法[J]. 控制与决策, 2002, 15(2): 221-223. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200002022.htm
Hu Y H, Jia X L. A direct algorithm for generalized predictive control[J]. Control and Decision, 2002, 15(2): 221-223. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200002022.htm
|
[94] |
Wang Y, Boyd S. Fast model predictive control using online optimization[J]. IEEE Transactions on Control Systems Technology, 2009, 18(2): 267-278. https://www.sciencedirect.com/science/article/pii/S1474667016400662
|
[95] |
Chen H, Xu F, Xi Y. Field programmable gate array/system on a programmable chip-based implementation of model predictive controller[J]. IET Control Theory and Applications, 2012, 6(8): 1055-1063. doi: 10.1049/iet-cta.2010.0443
|
[96] |
Yin X, Decardi-Nelson B, Liu J. Subsystem decomposition and distributed moving horizon estimation of wastewater treatment plants[J]. Chemical Engineering Research and Design, 2018, 134: 405-419. doi: 10.1016/j.cherd.2018.04.032
|
1. |
阳鑫,张劲,冯学高,刘志. 基于CiteSpace的中国污水处理智能控制领域的研究热点与趋势分析. 四川环境. 2024(02): 132-138 .
![]() | |
2. |
刘传玉,熊伟丽. 基于超标抑制策略的污水处理过程多目标优化控制. 信息与控制. 2024(02): 250-260+272 .
![]() | |
3. |
何新忠. 新型曝气控制系统和模型在污水处理中的应用. 清洗世界. 2024(05): 45-47 .
![]() | |
4. |
周利伟,王一文. 多雨环境下市政排水系统污染负荷控制方法研究. 环境科学与管理. 2024(08): 96-100 .
![]() | |
5. |
丁万杰,刘钊,王孝红. 石化废水处理溶解氧浓度优化控制研究进展. 现代化工. 2024(S1): 16-20 .
![]() | |
6. |
马会彪,曾静. 基于POD-LSTM的污水处理过程模型预测控制. 电子测量技术. 2024(13): 81-88 .
![]() | |
7. |
高会萌,罗超. 循环量预测模型下石化污水脱硫罐液位控制方法. 化工自动化及仪表. 2024(06): 985-989 .
![]() | |
8. |
何韶渺,武玉玲,马一祎,张开明,帅嘉,司凡. 基于POI流量估算与ES算法校核的污水管网模拟研究. 给水排水. 2024(12): 139-145 .
![]() | |
9. |
陈洪科. 污水处理溶解氧浓度DMC控制仿真研究. 机电技术. 2023(01): 6-9 .
![]() | |
10. |
包遵胜,熊晓励,刘纪成,辛路,张丹宇,李善强. 某污水深度处理厂人工精细化调控碳源投加量的探究. 环境工程. 2023(04): 137-142 .
![]() | |
11. |
韩红桂,秦晨辉,孙浩源,乔俊飞. 城市污水处理过程自适应滑模控制. 自动化学报. 2023(05): 1010-1018 .
![]() | |
12. |
张丽萍. 城市污水处理对环境保护工程的影响研究. 皮革制作与环保科技. 2023(07): 89-91 .
![]() | |
13. |
裴力锋,陈伟杰,徐敬生,吕路. 基于自注意力机制的污水处理厂精确加药模型预测控制. 环境工程. 2023(11): 84-92+140 .
![]() | |
14. |
何昕雷. 基于模糊PID算法的自动控制研究. 粘接. 2022(03): 177-181 .
![]() | |
15. |
殷逢俊,徐泽宇,刘鸿. 基于机理模型与数据模型融合的污水处理智能控制系统构建思路. 环境工程. 2022(06): 138-144 .
![]() | |
16. |
吴宇行,王晓东,陈宁,杨本亮,颜廷梁,黄青. 典型城镇污水处理厂碳源智能投加控制生产性试验. 环境工程. 2022(06): 212-218+271 .
![]() | |
17. |
肖飞,康增彦,王维红. 两种算法用于预测A~2/O工艺脱氮条件. 广西师范大学学报(自然科学版). 2022(06): 173-184 .
![]() |