Citation: | LI Junqiang, LYU Ruiwu, YANG Dong, LI Tiejun. Control Method of Human-robot Coordinated Motion Based on Flexible Human-robot Interface[J]. INFORMATION AND CONTROL, 2022, 51(2): 237-246, 256. DOI: 10.13976/j.cnki.xk.2022.1093 |
To improve human-robot interaction force in human-robot coordinated motion based on force information, the method of setting elastic elements in the human-machine interface is adopted, and a human-robot interaction mechanics model with a flexible human-robot interface is developed. An adaptive impedance control method based on a flexible human-robot interface is proposed based on the existing robust adaptive impedance control method. This control method performs proportional compensation on the position and speed of the outer impedance loop and uses fuzzy PID control for the inner loop of the force control to achieve an improved adaptive impedance algorithm, thereby improving the position tracking accuracy and effectively reducing the human-robot interaction force. The influence of the elastic elements on the human-robot interface and its control effect are analyzed. When different stiffness coefficients are obtained, the interactive force control effect and location tracking accuracy are obtained. On this basis, a test system is established and completed. The human-robot coordinated motion test results show that the application of flexible human-robot interface and improved control method has a better human-robot interaction control effect. Standard motion input test results show that the improved control method has a better human-robot interaction force control effect and higher position tracking accuracy. The magnitude of the human-robot interaction force and position tracking accuracy are proportional to the stiffness coefficient of the human-robot interface.
[1] |
Lynch K M, Park F C. Modern robotics: Mechanics, planning, and control[M]. Cambridge, UK: Cambridge University Press, 2017.
|
[2] |
Bestick A M, Burden S A, Willits G, et al. Personalized kinematics for human-robot collaborative manipulation[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2015: 1037-1044.
|
[3] |
杨智勇, 归丽华, 杨秀霞, 等. 骨骼服虚拟力控制方法研究[J]. 机器人, 2009, 31(4): 365-369. doi: 10.3321/j.issn:1002-0446.2009.04.011
Yang Z Y, Gui L H, Yang X X, et al. On virtual force control of exoskeleton suit[J]. Robot, 2009, 31(4): 365-369. doi: 10.3321/j.issn:1002-0446.2009.04.011
|
[4] |
Gil J J, Sánchez E. Control algorithms for haptic interaction and modifying the dynamical behavior of the interface[C]//International Conference on Enactive Interfaces Genoa. Berlin, Germany: Springer, 2005: 1-6. DOI: 10.1086/520325.
|
[5] |
刘波, 李艺, 蔡校蔚, 等. 床式下肢康复训练机器人模糊自适应阻抗控制[J]. 机械制造与自动化, 2018, 47(6): 154-157.
Liu B, Li Y, Cai X W, et al. Fuzzy adaptive impedance control of bed type lower limb rehabilitation robot[J]. Machine Building & Automation, 2018, 47(6): 154-157.
|
[6] |
李焕, 王奉文, 徐世杰, 等. 基于阻抗控制的机械臂末端工具的柔顺控制[J]. 空间控制技术与应用, 2019, 45(1): 20-26. doi: 10.3969/j.issn.1674-1579.2019.01.004
Li H, Wang F W, Xu S J, et al. Compliance control of end tool of space manipulator based on impedance control[J]. Aerospace Control and Application, 2019, 45(1): 20-26. doi: 10.3969/j.issn.1674-1579.2019.01.004
|
[7] |
樊旭. 基于力控制的幕墙安装机器人柔顺操作策略研究[D]. 天津: 河北工业大学, 2016.
Fan X. Compliance operation strategy of curtain wall installing robots based on force control[D]. Tianjin: Hebei University of Technology, 2016.
|
[8] |
陈靓, 黄玉平, 陶云飞, 等. 基于阻抗模型的下肢康复机器人交互控制系统设计[J]. 计算机测量与控制, 2020, 28(4): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK202004024.htm
Chen L, Huang Y P, Tao Y F, et al. Design of interactive control system for lower limb rehabilitation robot based on impedance model[J]. Computer Measurement and Control, 2020, 28(4): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK202004024.htm
|
[9] |
Marhanani C, Suprijanto A W. Free regressor adaptive impedance control for arm rehabilitation robot[C]//2016 International Conference on Instrumentation, Control and Automation. Piscataway, USA: IEEE, 2016: 76-80.
|
[10] |
Gholami S, Taghirad A A. An observer-based adaptive impedance-control for robotic arms: Case study in SMOS robot[C]//4th International Conference on Robotics and Mechatronics. Piscataway, USA: IEEE, 2016: 49-54.
|
[11] |
段晋军, 甘亚辉, 戴先中. 双臂协调搬运过程中基于变阻抗模型的位置/力混合控制[J]. 机器人, 2019, 41(6): 795-802. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201906012.htm
Duan J J, Gan Y H, Dai X Z. The hybrid position/force control based on variable impedance model in the dual-arm coordinated transport[J]. Robot, 2019, 41(6): 795-802. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201906012.htm
|
[12] |
Kazerooni H, Steger R. The Berkeley lower extremity exoskeleton[J]. Journal of Dynamic Systems, Measurement, and Control, 2005, 128(3): 14-25.
|
[13] |
Lee S, Sankai Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint[C]//2002 International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2002: 1499-1504.
|
[14] |
Connolly T H, Pfeiffer F. Neural network hybrid position/force control[C]//1993 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 1993: 240-244.
|
[15] |
方丽, 彭顺生. 基于DMFC的上肢外骨骼人—机协调控制系统[J]. 计算机测量与控制, 2015, 23(7): 2381-2384. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201507042.htm
Fang L, Peng S S. A DMFC based man-machine coordinated control system of upper limb exoskeleton[J]. Computer Measurement and Control, 2015, 23(7): 2381-2384. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201507042.htm
|
[16] |
孙晓, 杨守平, 王兴, 等. 多关节机器人的模糊自适应阻抗控制研究[J]. 自动化仪表, 2018, 39(1): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201801010.htm
Sun X, Yang S P, Wang X, et al. Study on fuzzy adaptive impedance control of multi-joint robot[J]. Automation Instrumentation, 2018, 39(1): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB201801010.htm
|
[17] |
Annamraju S, Raj S, Pediredla V K, et al. Parameter determination technique for impedance control of interactive robots using transformation matrices[J]. IFAC-PapersOnLine, 2020, 53(1): 201-205. doi: 10.1016/j.ifacol.2020.06.034
|
[18] |
Brahmi B, Brahmi A, Saad M, et al. Robust adaptive tracking control of uncertain rehabilitation exoskeleton robot[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(12): 121-129.
|
[19] |
Seul J, Hsia T C, Bonitz R G. Force tracking impedance control of robot manipulators under unknown environment[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3): 474-483. doi: 10.1109/TCST.2004.824320
|
[20] |
温彬彬. 通用力反馈设备的自适应阻抗控制仿真研究[D]. 北京: 北京交通大学, 2017.
Wen B B. Research on adaptive impedance control simulation of haptic device[D]. Beijing: Beijing Jiaotong University, 2017.
|
[21] |
张惠琳, 李醒飞, 杨少波, 等. 深海自持式智能浮标双闭环模糊PID定深控制[J]. 信息与控制, 2019, 48(2): 202-208. doi: 10.13976/j.cnki.xk.2019.8270
Zhang H L, Li X F, Yang S B, et al. Dual closed-loop fuzzy PID depthfor deep-sea self-holding intelligent buoy[J]. Information and Control, 2019, 48(2): 202-208. doi: 10.13976/j.cnki.xk.2019.8270
|
[22] |
Zhang Y M, Yue H W, Li K, et al. Analysis of power matching on energy savings of a pneumatic rotary actuator servo-control system[J]. Chinese Journal of Mechanical Engineering, 2020, 33(2): 95-107.
|
[1] | REN Danmei, BIAN Feifei. A Survey of Control Methods for Robot Compliant Behaviour[J]. INFORMATION AND CONTROL, 2024, 53(4): 433-452. DOI: 10.13976/j.cnki.xk.2024.4003 |
[2] | XU Mingyu, LEI Xiaokang, DUAN Zhongxing, XIANG Yalun, DUAN Mengyuan, ZHENG Zhicheng, PENG Xingguang. Human-Swarm Robots Interaction Approach Based on Virtual Reality and Eye Tracking[J]. INFORMATION AND CONTROL, 2024, 53(2): 199-210. DOI: 10.13976/j.cnki.xk.2023.2548 |
[3] | TAN Chenyu, XU Peng, LI Ping, YU Hongliu. Current Research on Modeling and Control Methods for Cable-driven Flexible Manipulator[J]. INFORMATION AND CONTROL, 2023, 52(3): 277-291. DOI: 10.13976/j.cnki.xk.2023.2033 |
[4] | LIN Guangmo, ZHAO Xingang, HAN Jianda, LIU Guangjun. Robot Joint Stiffness Control Based on Series Elastic Actuator[J]. INFORMATION AND CONTROL, 2019, 48(3): 364-371. DOI: 10.13976/j.cnki.xk.2019.8297 |
[5] | WANG Xuezhu, LI Hongyi, WANG Yuechao, CUI Long. High-precision Adaptive Backstepping Control of Flexible Joint Robots[J]. INFORMATION AND CONTROL, 2016, 45(1): 1-7. DOI: 10.13976/j.cnki.xk.2016.0001 |
[6] | TANG Bin, LUO Jun, PENG Shiguo, ZHANG Yun. New Stability Criteria of Networked Control Systems[J]. INFORMATION AND CONTROL, 2015, 44(4): 453-462,468. DOI: 10.13976/j.cnki.xk.2015.0455 |
[7] | WANG Wei, HUANG Xiaodan, ZHAO Jijun, SHEN Yanguang. Implicit Human-Computer Interaction[J]. INFORMATION AND CONTROL, 2014, 43(1): 101-109. DOI: 10.3724/SP.J.1219.2014.00101 |
[8] | LIU Xinping, LIU Hongcai. ADAPTIVE ROBUST CONTROLLER ALGORITHMS[J]. INFORMATION AND CONTROL, 1989, 18(3): 14-23. |
[9] | JIANG Xinhua. ADAPTIVE PID CONTROL(SURVEY)[J]. INFORMATION AND CONTROL, 1988, 17(5): 41-50. |
[10] | JIANG Xinhua. ADAPTIVE PID CONTROL(SURVEY)[J]. INFORMATION AND CONTROL, 1988, 17(5): 41-50. |
1. |
敖天勇,曹贤泽,付乐,周毅. 基于脉冲神经网络的机器人智能控制研究进展. 信息与控制. 2024(04): 453-470 .
![]() | |
2. |
谢正泰,樊佳亮,刘梅,金龙. 基于神经网络的机器人学习与控制:回顾与展望. 信息与控制. 2023(01): 37-58 .
![]() | |
3. |
王露,刘霞. 基于时延控制的机器人自适应混合位置/力控制. 西华大学学报(自然科学版). 2023(04): 66-74 .
![]() |